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Abstract 

The dissertation, titled “Genetic Algorithms Applied to Nonlinear and Complex Do- 

mains”, describes and then applies a new class of powerful search algorithms (GAS) to 

certain domains. GAS are capable of solving complex and nonlinear problems where 

many parameters interact to produce a ‘final’ result such as the optimization of the 

laser pulse in the interaction of an atom with an intense laser field. GAS can very ef- 

ficiently locate the global maximum by searching parameter space in problems which 

are unsuitable for a search using traditional methods. In particular, the dissertation 

contains new scientific findings in two areas. 

First, the dissertation examines the interaction of an ultra-intense short laser pulse 

with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the 

ionization process. This leads to a new theoretical formulation, to explain what is 

happening during the ionization process and how the electron is responding to finite 

(real-life) laser pulse shapes. It is shown that the dynamics of the process can be 

very sensitive to the ramp of the pulse at high frequencies. The new theory which is 



formulated, also uses a novel concept (known as the (t ,t’) method) to numerically solve 

the time-dependent Schrodinger equation Second, the dissertation also examines the 

use of GAS in modeling decision making problems. It compares GAS with traditional 

techniques to solve a class of problems known as Markov Decision Processes. The 

conclusion of the dissertation should give a clear idea of where GAS are applicable, 

especially in the physical sciences, in problems which are nonlinear and complex, i.e. 

difficult to analyze by other means 

Prof. Ann E. Ore1 
Dissertation Committee Chair 

iv 
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Chapter 1 

Introduction 

1.1 Preface 

The scientific findings contained in this dissertation grew from a set of computa- 

tional experiments, designed to simulate the irradiation of atoms by high-intensity 

laser pulses. These pulses, with intensities above 1013W/cm2, are capable of send- 

ing thousands or even millions of photons with an energy of approximately lo-r3erg 

through a typical atomic cross section (lo-r6cm2) during a pulse of a picosecond or 

less. The pulse interaction with atoms and molecules is interesting to model, because 

both the target and the frequency of photons are altered as a consequence. 

Atomic stabilization is an interesting effect which occurs as a result of high- 

intensity laser-atom interaction As the laser intensity gets higher, the probabil- 



2 

ity that an electron is stripped from the core atom and becomes ionized increases 

with intensity. At first, the increase is linear. However, at intensities higher than 

1013w/cm2, the pattern changes. This process can be described with four input pa- 

rameter values (intensity, frequency, pulse shape, duration of the pulse) for computer 

simulation. Computer simulations are often performed on a simplified model of a 

hydrogen atom due to time and memory constraints. Still, it is possible to improve 

on past attempts, by introducing systematic search methods in conjunction with par- 

allel runs. Such systematic schemes can efficiently locate the “interesting” parts of 

parameter space. That way, useful processing of information can be performed with 

existing resources of time and memory allocations. These techniques led to my dis- 

covering that a high-frequency limit exists when atoms are stabilized by pulses with 

a short rise time. The ionization was defined as the population which is left after the 

pulse is over relative to the population in the initial state of the system. A struc- 

ture was observed when plotting the ionization probability versus intensity. Chapter 

4 explains the high-frequency limit structure based on the slope of the pulse rise-time. 

The systematic search scheme which was chosen for this task, a genetic algorithm, 

is described in this chapter. It is implemented throughout this dissertation. It is 

interesting to examine the following questions regarding the success of genetic algo- 

rithms in searching parameter space. First, are there other general stochastic search 

methods that can perform equally well? Second, are there deterministic search meth- 



ods that can perform better than genetic algorithms on problems where both can be 

applied? The answers to these questions point out the strengths and weaknesses of 

the genetic algorithm methods. 

To answer both questions, detailed comparisons with other techniques are per- 

formed. In chapter 3, a comparison between genetic algorithms and simulated an- 

nealing demonstrates that simulated annealing performs equally well on searching 

for the optimal frequency to maximize atomic stabilization. In chapter 5, a model 

problem from the area of complex decision making is introduced along with dynamic 

programming, a deterministic search technique which is specifically used to ‘solve 

problems of this type: In chapter 6, genetic algorithms and dynamic programming 

are compared. Dynamic programming is clearly superior to genetic algorithms for 

this model problem. 

Thus, the thesis is organized in two parts: the first is a successful implementation 

of genetic algorithms, which culminates in the non-adiabatic high-frequency theory 

described in chapter 4. It is shown that simulated annealing could have been used 

with an equal amount of success. The second is an unsuccessful implementation of 

genetic algorithms. The conclusion of this dissertation, drawn in chapter 7, is that ge- 

netic algorithms can be used as general search schemes. Although genetic algorithms 

can not compete successfully with deterministic algorithms, they can conveniently 



be implemented on a variety of problems. However, they represent no conceptual 

breakthrough in their introduction from the theoretical standpoint, because simu- 

lated annealing offers the same type of mechanism without the distraction of new 

terminology borrowed from biology and economics. 

1.2 Genetic Algorithms 

Genetic algorithms are search algorithms that use concepts from reproduction 

and natural selection to produce better solutions (children) from previous solutions 

(parents). Genetic algorithms were invented by John Holland in the 1960s and were 

developed by Holland [l] and his students [2] and colleagues at the University of 

Michigan in the 1960s and the 1970s. Since then, genetic algorithms have given rise 

to many new applications in a variety of disciplines. Genetic algorithms are a rapidly 

expanding field. 

Much like simulated annealing, the genetic algorithm belongs to the same class of 

stochastic optimization techniques which offer an alternative to traditional methods 

such as the gradient search and other calculus-based methods. However, simulated 

annealing and genetic algorithms utilize a different strategy. In [3], these two tech- 

niques are discussed and applied to several model problems. 

Although the field has grown to encompass several subfields which are actively 



being pursued on their own right, the basic concept of optimizing a function using 

genetic algorithms is the driving force behind all these extensions. Genetic pro- 

gramming, evolving a set of computer programs to perform various tasks, as well 

as classiifier systems, evolving rule-based systems, are two examples of such active 

subfields. There are other evolution strategies aside of genetic algorithms. Therefore 

the whole field (which includes genetic algorithms as a subset) is often referred to 

as evolutionary computing. In this dissertation, however, attention is only given to 

genetic algorithms in their basic form. 

1.3 Genetic Algorithm Basic Terminology 

Since genetic algorithms simulate biological evolution, it is useful to introduce 

some of the terminology borrowed from biology. In a biological system, the structure 

that encodes the prescription of how the organism is to be constructed is called a 

chromosome. One or more chromosomes may be required to specify the complete 

organism. The complete set of chromosomes is called a genotype, while the resulting 

organism is called a phenotype. 

Each chromosome is made up of individual structures called genes. Each gene 

encodes a specific feature of the organism, such as the eye color. The different values 

of a gene, such as green, blue or hazel colors, are called alleles. The location of the 

gene within the chromosome, the ZOCUS, is responsible for the characteristic the gene 
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represents. 

In a genetic algorithm simulation, chromosomes are represented by a string of 

some variable type. Binary strings, which comprise binary bits, are most common 

although other representations have been used. However, it should be stressed that 

at this time, not much is known from the theoretical standpoint about other repre- 

sentations aside of the binary representation (as will be discussed in the theoretical 

foundations section). In the binary representation, the alleles are zero and one. 

Furthermore, in a case where there is only one chromosome per organism, the 

chromosome and genotype are the same. The phenotype is the solution decoded from 

the genotype. It is possible to refrain from biological terminology and speak of strings, 

positions on the string, and values, instead of chromosomes, genes, and alleles. 

1.4 Genetic Algorithms in Practice 

First, an example problem is solved using the standard genetic algorithm im- 

plementation, known as the simple genetic algorithm. This simple example should 

illustrate how genetic algorithms work. 



1.4.1 Simple Genetic Algorithm 

The example problem which will be used to illustrate the mechanism of a simple 

genetic algorithm in practice, is a typical problem which is difficult for traditional 

techniques. Given the following noisy function, find the maximum of that function: 

cos(x) 
Rx) = l+ (1+ x2/100) 

This function (figure 1) contains a global maximum at x=0 and many local max- 

ima which are suboptimal. Traditional hill-climbing techniques will fail miserably to 

advance towards the right solution, after reaching one of the suboptimal peaks and 

getting stuck there. The genetic algorithm evolution procedure to find the global 

maximum is now described step by step. 

Figure 1.1: An example function to be optimized by a genetic algorithm search 

1. Chromosome Representation: Using a binary representation, represent 



each chromosome as a ten-digit binary string. Scale the phenotypes to val- 

ues between -40 and 40. Therefore, the chromosome [O,O, O,O, O,O, O,O, O,O] 

must decode to the value -40, and the chromosome [l, 1, 1, 1, 1, 1, 1, 1, I, l] 

must decode to the value 40. Note that the binary number 1111111111 

is equal to decimal 1023, which means that 2i0 = 1024 points are used to 

represent the interval between -40 and 40. With the chosen discrete rep- 

resentation, chromosome [0, 1, 1, 1, I, I, 1, 1, 1, I] decodes to -0.0391007, 

the largest negative phenotype. Chromosome [I, 0, 0, 0, 0, 0, 0, 0, 0, 0] de- 

codes to 0.0391007, the smallest positive phenotype. 

2. Initialization: Construct a random population with ten individuals. The 

ten individuals are spread evenly over all space, in the example above ten 

random points are chosen between -40 and 40. 

3. Fitness Function: Based on the quantity to be optimized, construct a fit- 

ness function that assigns a score (fitness) to each chromosome. Thus, 

each individual in the population gets a fitness which will determine its 

fate during the evolutionary process. The fitness function for finding the 

global maximum in figure I is simply the function to be optimized itself: 

f(x) = 1+ cos(x)/(l +x2/100) 



4. Parent Selection: Select parents for reproduction. Several methods can 

be applied, one of which is the roulette-wheel method. In this method, the 

individuals are organized from lowest to highest fitness. Two parents are 

then selected with a probability in direct proportion to their fitness values, 

so that individuals with a higher fitness are more likely to be chosen. 

5. Reproduction: Apply crosso’uer and mutation on the parents. These two 

simple genetic operators, when applied together, have been shown [l] to 

improve the fitness of the population as a whole in a systematic and effi- 

cient manner. There are many different crossover methods. The simplest 

is a single-point crossover and is described as follows: a pair of chromo- 

somes, such as [1011000101] and [1111010110], are selected as parents’ 

chromosomes and the crossover point is selected to be between the 4th 

and 5th locus. The childrens’ chromosomes are then formed by combin- 

ing opposite parts of each parent’s chromosome D For the example given 

above, the children are: [1011010110] and [1111000101]. More precisely, 

after selecting two parents for mating, a biased coin flip with certain prob- 

ability of heads will determine whether to proceed with the crossover. If 

the coin toss is successful, a crossover point is chosen at random and two 
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children are produced by slicing the genes up to the crossover point from 

one parent with the genes beyond the crossover point from the other par- 

ent. If the coin toss is not successful, the parents themselves are simply 

returned as the new children. 

The crossover mechanism was theoretically shown [I] to generate a popu- 

lation whose overall fitness increases with time, as the desirable features 

of each parent are combined. It can happen, however, that crossover re- 

sults in children who are less fit than their parents. By subjecting each of 

the genes to a small probability of mutation, it is possible occasionally to 

reverse the results of a bad crossover. Mutation can occur at each locus 

in a chromosome with some probability, usually very small, to produce 

variations just as in natural evolution. 

6. Populating the New Generation: Build the next generation. A simplistic 

approach is to mate enough parents so that enough children are produced 

to completely replace their parents. This technique, called generational re- 

placement, allows for the most thorough possible mixing of genes (whether 

desirable or not) in the new generation. It is possible to counter some of 

the negative effects of generational replacement by retaining a certain 

number of the best individuals from the previous generation, a strategy 

which is often used and is called elitism. Therefore at the opposite side 

of the spectrum from generational replacement, there exists a technique 



called steady state reproduction which is sometimes used. In this method, 

a certain number of individuals are replaced with an equal number of chil- 

dren and all other individuals remain unchanged. In the simple genetic 

algorithm, generational replacement is mostly used. 

7. Go to step 3 until convergence criterion is achieved. 

For the example above, applying the simple genetic algorithm with a crossover 

percentage of 0.75, mutation percentage of 0.008 and an initial population of 100 

candidates, five generations were enough to reach y = 1.87132, which is very close to 

the global maximum located at y = 2.0. 

1.4.2 Micro Genetic Algorithms 

In this dissertation, a variant of genetic algorithms called micro genetic algorithms 

[4] is often used. The.main differences between micro genetic algorithms and simple 

genetic algorithms are described in this section. 

In a simple genetic algorithm, a question which has been addressed in various 

studies is how one should choose the optimal population size. The basic idea in a 

micro genetic algorithm, as its name suggests, is to work with the smallest popula- 

tion size possible in order to minimize the number of function evaluations required. 
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In cases where the function evaluation is expensive, this strategy proves to be effec- 

tive. However, at the cost of saving time, micro genetic algorithms are less accurate 

and comprehensive in finding the exact global optimum compared to simple genetic 

algorithms. In problems in which near-optimality and best-so-far string are more im- 

portant than the average behavior of the population as a whole and exact optimality, 

this strategy is recommended and in principle should work more efficiently than the 

simple genetic algorithm. 

The motivation behind micro genetic algorithms is that genetic algorithms gener- 

ally perform poorly with very small population size, due to insufficient information 

processing and early convergence to non-optimal results. Therefore, some slight mod- 

ifications are needed, rather than simply taking the simple genetic algorithm with a 

small population size. A step by step procedure for the micro genetic algorithm 

implementation is given below: 

1. Randomly select a population size of 5 individuals initially, or 4 random 

and 1 good string from any previous search. 5 is the minimal population 

size which can offer enough diversity in the evolution process. 

2. Evaluate fitness and determine the best string. Label it as string 5 and 

carry it to the next generation (elitist strategy). 

3. Choose the remaining 4 strings for reproduction (the best string also com- 



13 

petes for a copy in the reproduction) based on a deterministic tournament 

selection strategy [a]. In the tournament selection strategy, the strings are 

grouped randomly and adjacent pairs are made to compete for the final 

four. 

4. Apply a crossover percentage of 1.0. Mutation rate is kept to zero, since 

enough diversity is introduced after every convergence through new pop- 

ulation of strings. 

5. Check for nominal convergence (an example would be to count the number 

of different bits in the whole population from best member, and if less than 

5% of number of bits are different, consider population to be converged). 

If converged go to step 1. 

6. Go to step 2. 

As was mentioned above, average behavior of the population has no meaning in the 

micro genetic algorithm. Therefore performance measure, when compared to other 

genetic algorithm strategies, should solely be based on the best-so-far string rather 

than on any average performance. 

1.4.3 Parallel Implementations 

It is well known that genetic algorithms are structured in a way which is highly 

parallelizable. In problems which are time consuming and computationally very ex- 
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pensive, it is more efficient to utilize a parallel implementation of genetic algorithms. 

Among several prototypes which were examined in early studies [5] for designing 

a parallel genetic algorithm, the simplest is the master-slave prototype which is used 

throughout this dissertation. 

In a master-slave prototype, a single master process coordinates k slave processes 

(k can be chosen depending on the problem specifics). The master process controls 

selection, mating, and the performance of genetic operators. The role of the slaves 

is only to perform function evaluations. Since each slave corresponds to a different 

function evaluation, the need for communication among processes is avoided (besides 

a one-time global broadcast of data from the master to all slaves, which is sometimes 

used for convenience). This makes the scheme embarrassingly parallel. 

This scheme is known to have two major drawbacks. First, a fair amount of time 

is wasted if there is a variance in the time of function evaluations. Second, it relies on 

the health of the master process as far as reliability issues are concerned. In problems 

which are examined in this dissertation and many others, such drawbacks are of less 

relevance. 
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1.5 Theoretical Foundations 

In this section, some of the approaches to understand the theoretical foundations 

of genetic algorithms are briefly described. A complete survey of work on the theory 

of genetic algorithms can easily fill several volumes. It should be noted however, that 

genetic algorithms theory is by no means a closed book and there are more open 

questions than answered ones. 

1.5.1 The Schema Theorem 

The traditional theory of genetic algorithms (first formulated in [l] and expanded 

in [2]) assumes that at a very basic level, genetic algorithms work by discovering and 

recombining good building blocks in an efficient way. The idea is that good solutions 

tend to be made up of good building blocks, which are combination of bit values that 

confer higher fitness on the strings in which they are present. 

To formalize the informal notion of building blocks, the notion of schemas (or 

schemata) was introduced. A schema is a set of bit strings made up of ones, zeros 

and asterisks, the asterisks representing wild cards (don’t cares). For example, the 

schema H = 1* * * *l represents the set of all 6-bit strings that begin and end with 1. 

The strings that fit this template (e.g., 100111 and 110011) are said to be instances 

of H. The schema H is said to have two defined bits (non-asterisks) or, equivalently, 

to be of order 2. Its defining length (the distance between its outermost defined bits) 
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is 5. Traditional genetic algorithm theory is based on schemas being the building 

blocks that the genetic algorithm processes effectively under the operators of selec- 

tion, mutation and crossover. 

The approximate dynamics of an increase and decrease in schema instances can 

now be formulated as follows. Let H be a schema with at least one instance present in 

the population at time t. Let m(H, t) be the number of instances of H at time t, and 

let Q(H,t) be the observed average fitness of H at time t (i.e., the average fitness of 

instances of H in the population at time t). The goal is to calculate E(m(H, t + 1))) 

the expected number of instances of H at time t + 1. With the assumption that 

selection is carried out in a roulette-wheel fashion, the expected number of offspring 

of a string x is equal to f(x)/f(t), where f(x) is the fitness of x and f(t) is the average 

fitness of the population at time t. Letting x E H denote that x is an instance of H, 

the following relationship holds: 

-%W, t + 1)) = c f (x)/.f(t) = (Q(H, t)/f(t)h(K t> P-2) 
XEH 

since by definition, Q(H, t) = (C,., f(x))/m(H, t) for x in the population at time t. 

Crossover and mutation can both destroy and create instances of H. In order to 

obtain a lower bound on E(m(H, t + l)), only the destructive effects are considered 

(the worst case). First, the disruptive effect of crossover is examined. Schema H will 

survive under a single-point crossover only if one of the offspring is also an instance of 



17 

schema H. Letting p, be the probability that a single-point crossover will be applied 

to a string, d(H) be the defining length of H and I be the length of bit strings in the 

search space, a lower bound on the probability S,(H) that H will survive single-point 

crossover is: 

S,(H) 2 1 -P, (1.3) 

The lower bound was obtained for the following reasoning. Crossovers occurring 

within the defining length of H can destroy H (i.e., can produce offspring that are 

not instances of H), so the fraction of the string that H occupies multiplied by the 

crossover probability gives an upper bound in the probability that it will be destroyed. 

Subtracting this value from 1 gives a lower bound on the probability of survival S,(H). 

In short, the probability of survival under crossover is higher for shorter schema,s. 

Second, the disruptive effect of mutation is examined. Letting p, be the proba- 

bility of any bit being mutated and o(H) th e order of H (i.e., the number of defined 

bits in H), then Z&(H), the probability that schema H will survive under mutation 

of an instance of H is: 

Sm(H) = (1 - p,,)0(H) (1.4) 

That is, for each bit, the probability that the bit will not be mutated is I - p,, 

so the probability that no defined bits of schema H will be mutated is this quantity 

multiplied by itself o(H) times. In short, the probability of survival under mutation 
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is higher for low-order schemas. Combining the two disruptive effects, one obtains: 

JW@C t + 1)) 2 WC t) f(t)m(H,t) (1 -PCs) [(l -pm)o(H)] (1.5) 

This is known as the Schema Theorem [1,2], or the Fundamental Theorem of 

Genetic Algorithms. It describes the growth of a schema from one generation to 

the next and implies that short, low-order schemas whose average fitness remain 

above average, will receive exponentially increasing numbers of samples (i.e., instances 

evaluated) over time. The reason for the exponential growth is that the number 

of samples of those schemas that are not disrupted and remain above average in 

fitness increases by a factor of fi(H, t)/f(t) at each generation. Why this supports 

the observation in practice that genetic algorithms are indeed efficient stochastic 

algorithms, also from the theoretical standpoint, is discussed in the next section. 

1.5.2 The Multiarmed Bandit Analogy 

The Schema Theorem proves that schemas of short defining length, low order, 

and above average fitness receive exponentially increasing trials in future generations. 

This section attempts to answer, using a well-founded problem from statistical deci- 

sion theory, why this result is important. The basic idea is that the optimal solution 

to the two-armed bandit problem and its extension, the k-armed bandit problem, is 

very similar in form to the exponential allocation of trials obtained from the Schema 

Theorem to model genetic algorithms. Only a qualitative brief sketch of the results 

is given in this section, a comprehensive treatment can be found in the genetic algo- 
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rithm literature [2]. 

In the two armed bandit problem, a gambler is given N coins with which to play a 

slot machine having two arms (a conventional Las Vegas slot machine is a one-armed 

bandit). Assuming that one of the arms pays an award of pl with a variance of 012 and 

the other arm pays an award of ,uZ with a variance of a;, where ~1 2 ,~2, a decision 

should be made as to which arm to play. The difficulty is that the gambler does not 

know these payoff rates or their variances in advance, it can only be estimated by 

playing coins on the different arms and observing the payoff obtained on each. A 

fundamental theme in adaptive systems theory is applicable here, in which the deci- 

sion maker must make a sequence of decisions about which arm to play and at the 

same time collect information about which is the better arm. This is known as the 

trade-off between exploration for knowledge and the exploitation of that knowledge. 

The tension between exploration and exploitation can be viewed as the most basic 

guiding rule in an adaptive system [l], whether genetic algorithms or bandits, and an 

optimal balance between the two must be found. 

Holland has performed calculations that show how trials should be allocated be- 

tween the two arms to minimize expected loss. This results in the allocation of n* 

trials to the worse arm and N - n* trials to the better arm, where n* is given by the 
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following equation: 

(1.6) 

where b = ai/(,~r - ~2). Turning the equation around, the following equation predicts 

the number of trials given to the observed better arm: 

N - n* g N g d&b4 ln jjT2 ~ en*/2b2 0.7) 

which implies that in order to allocate trials optimally, the gambler should give slightly 

more than exponentially increasing trials to the observed best arm. Such strategy 

is unfortunately not realizable, as it requires knowledge of outcomes before they oc- 

cur. Its importance is by forming a bound on performance that a realizable strategy 

should try to approach. Since the schema theorem guarantees giving at least an 

exponentially increasing number of trials to the observed best building blocks, it is 

therefore found that the genetic algorithm is a realizable yet near optimal procedure 

for searching among alternative solutions. 

Finally, it should be noted that with a genetic algorithm we are no longer solving 

a simple two-armed bandit problem, but a simultaneous solution of many multiarmed 

bandits. An extension of the two-armed bandit can be made. It is also worthwhile 

mentioning that the Schema Theorem was developed using a three-operator (selection, 

crossover, mutation) genetic algorithm and a binary representation, which is known as 

the simple genetic algorithm. While there are extensions to the Schema Theorem for 
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treating other types of representations and crossover operators, not much is known 

from the theoretical standpoint about many genetic algorithm variants which are 

sometimes used in practice. 

1.5.3 The Ising One-Dimensional Model Analysis 

Finally, an approach to use methods from statistical mechanics to predict macro- 

scopic features of a genetic algorithm over a course of a run, on a given toy problem 

[6], is briefly sketched. 

The model problem being used is the one-dimensional Ising model. It consists of 

a vector of adjacent spins, S = (Si, 54, . . . . SN+r), where each Si is either -1 or +l 

(which naturally leads to a binary representation). Each pair of neighboring spins 

(i, i + 1) is coupled by a real-valued weight Ji. The total energy E(S) of the spin 

configuration S is: 

I@) = - 5 JiSiSi+l (1.8) 
i=l 

The goal is to find the minimal energy states. The genetic algorithm is then set 

with the problem of finding an S that minimizes the energy with given Ji’S (the Ji 

values were selected ahead of time at random in [-I, +l]). A chromosome is a string 

of N + 1 spins and the fitness of a chromosome is the negative of its energy. The initial 

population is generated by choosing such strings at random. At each generation a 

new population is formed by selection of parents that engage in single-point crossover 
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to form offspring. For simplicity, no mutation was used and a Boltxmunn selection 

procedure was chosen to select parents [a]. 

A way was found to devise a mathematical model, based on a set of equations 

to describe the effects of selection and crossover on the cumulants, aiming to predict 

changes in the distribution of energies (the negative of fitnesses) in the population over 

time. Indeed, the predicted evolution of the first two cumulants and their observed 

evolution in an actual genetic algorithm run did match remarkably well. The approach 

is not a general method for predicting genetic algorithm behavior (apart from a special 

case which is much dependant on the example model). Therefore it can not be used, 

as devised, to predict any actual genetic algorithm evolution run in common problems 

which are of real value. However, it serves as an illustration to the statistical nature 

of genetic algorithms and the fact that a macroscopic (rather than a microscopic) 

approach, borrowed from statistical mechanics, might be used in the future to assist 

in some way to the understanding of a genetic algorithm behavior. 

1.6 Contribution of this Dissertation 

In contrast to analytical solution analyses of difficult physics problems in certain 

limiting cases, it is almost impossible to cover all of parameter space while performing 

numerical experiments in a computer simulation. Often, one conducts such experi- 

ments by trial-and-error, based on intuition and acquaintance with a given problem. 
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Beginning with an introduction to genetic algorithms, this dissertation attempts to 

examine their use as a systematic search tool for finding optimal values in parameter 

space. In the first part, genetic algorithms are implemented on a nonlinear problem 

in atomic and molecular physics, which leads to a new theoretical formulation for 

solving this problem. In the second part, genetic algorithms are attached to a com- 

plex decision making problem in artificial intelligence. Lessons can be drawn, based 

on the success of this approach to make progress with the given problems. These 

precepts can be useful to researchers who are faced with similar difficult problems in 

computational physics as well as other scientific fields. 

1.6.1 Application of Genetic Algorithms 

Genetic algorithms have been applied to a wide range of problems since their in- 

vention. To mention only a few applications, genetic algorithms were implemented 

in radar and communication systems, neural networks, signal processing, geophysics, 

scheduling problems, protein structure predictions in molecular biology, data mining, 

etc. In addition to solving practical problems, they have been used in scientific mod- 

els of natural evolution and ecosystems. 

Applications of genetic algorithms to physics problems, in particular to laser 

physics, are steadily growing. The first use of genetic algorithms in optical con- 

trol [8] was in designing laser pulses to control the motion of molecules in real time. 
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In [9], a genetic algorithm is used to search for the laser pulse that best drives an 

electronic wave packet to a desired target. In [lo], genetic algorithms are used for 

chemical laser modeling. 

The two problems chosen for a genetic algorithm implementation in this disserta- 

tion are representatives of many other similar problems in which there is a potential 

for applying such an adaptive approach. An attempt is made to answer questions such 

as: In which type of problems are genetic algorithms more likely to be implemented 

successfully? How should such an implementation proceed? 

1.6.2 The Non-Adiabatic High Frequency Theory in Atomic 

Stabilization 

Atomic stabilization by high intensity laser field is a difficult nonlinear problem 

which is computationally expensive. In [II], a comprehensive attempt was made to 

understand stabilization at high frequencies and finite pulse shapes. While the lit- 

erature is rich with computational studies which were conducted to model atomic 

stabilization, the computations tend to be highly sensitive to the pulse shape in the 

case of finite pulses (pulse shapes with an on and off switching ramps). Some re- 

searchers are claiming based on their computational experiments [12,13] that atomic 

stabilization does not exist. Prior to the simulations covered in this dissertation, nu- 

merous computational runs by the author were performed in order to optimize the 
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stabilization effect using two distinct laser frequencies and two different pulse shapes 

This approach failed, since for each pulse shape a different stabilization structure was 

observed. It was evident that the simple case of one color (a single frequency) and 

one pulse shape is not fully understood. 

These initial studies prompted the idea of optimizing the stabilization effect with 

a fixed pulse shape and different colors using a systematic search method rather than 

by trial-and-error runs, in which one needs to perform an expensive calculation each 

time with a different parameter. Instead, parallel genetic algorithms were used [14] 

automatically to find the optimal frequencies which will produce a stabilization ef- 

fect. The results of these studies were in contrast to [ll]. This led to isolating the 

conceptual error which was hidden in current literature and based on that, a new 

formulation to explain finite-pulse stabilization at high frequencies was developed. 

In [15], the non-adiabatic high frequency theory was formulated to explain the 

stabilization effect. Genetic algorithms were no longer used in this study. However, 

the new theory was developed based on novel computational methods to solve the 

time-dependent Schrijdinger equation. A generalization of the (t,t’) method enabled 

the authors to simply remove the laser frequency explicitly from the calculation at 

high frequencies. Such new concepts can potentially be used in other related com- 

putational studies, as well as providing a new treatment which sheds light on atomic 



26 

stabilization at high frequencies, 

After an introduction to atomic stabilization in chapter 2, Chapter 3 describes 

the genetic algorithm implementation in detail. Chapter 4 presents the non-adiabatic 

high frequency theory, following a few introductory sections. 

1.6.3 Searching Policy Space in Markov Decision Processes 

Markov decision processes are used as a model to solve complex decision making 

under uncertainty. Problems of this type, which are of interest in robotic navigation 

and operations research, are known to be computationally expensive. Search methods 

to solve such problems have been constantly developed over the past 40 years, since 

the method of dynamic programming was invented [16]. Chapter 5 is an introduction 

to the terminology and methods used for Markov decision processes. 

In this dissertation, an attempt is made to compare between the traditional al- 

gorithms used in this field, which are deterministic in nature, and genetic algorithms 

which are a stochastic search method. While this study was in progress, a related 

study [17] recommended using genetic algorithms to solve a similar model problem. 

However, no actual comparisons with traditional techniques were reported in their 

work. Before proceeding, it should be noted that in an indirect way, genetic algo- 

rithms have already been incorporated in an adaptive reinforcement learning proce- 
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dure to solve, using certain approximations, some huge problems of this type [18]. 

In such large problems, traditional algorithms fail to work at all. Therefore, it is an 

interesting question to examine how well genetic algorithms perform when compared 

to traditional techniques in exact solutions, where both approaches are applicable. 

Dynamic programming is being developed to treat larger and larger problem sizes 

[19], building up on traditional thinking. The dissertation does not attempt to treat 

those problems for which dynamic programming is not yet applicable. 

In [20], it is found that in contrast to [17], dynamic programming is a more efficient 

search technique than genetic algorithms when both approaches are applied to the 

same model problem. Chapter 6 describes the comparison in detail. 
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Chapter 2 

Introduction to Atomic 

Stabilization 

In this chapter, atomic stabilization phenomenon is introduced. Section 2.1 begins 

with two discoveries from 1980s laser experiments, which led to a shift in viewpoint 

of how atoms behave in very strong laser fields. These two effects, above threshold 

ionization and high harmonic generation, are important and relevant to laser-induced 

stabilization. Section 2.2 then illustrates how numerical techniques were first used 

to explain basic phenomena in high-intensity laser atom interaction, following the 

experiments described in section 2.1. In section 2.3, early predictions of atomic stabi- 

lization are described. These.theoretical predictions initiated new experiments which 

are still being carried out at the late 1990s at the Netherlands, to verify atomic sta- 

bilization. Section 2.4 describes the numerical simulations which are used to model 
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atomic stabilization with a finite pulse (which is different from stabilization using 

continuous-wave laser fields). This type of stabilization is of recent interest in the 

field and the subject of a lively literature debate which is also referred to in section 

2.3. Section 2.5 then summarizes the state of understanding prior to the new findings 

described in the next two chapters. 

2.1 Ionization Experiments with High-Intensity Lasers 

For nearly 75 years, following the discovery of the photoelectric effect in 1905 

[21], a well-founded theory existed which was adequate to describe photoabsorption 

processes. With conventional light beams containing a low density of photons, con- 

servation of energy of the form Ed = Eo + ??w (where Ed is the energy of the detected 

electron in a photoabsorption experiment, E. (< 0) is the energy of the initial atom, 

and w is the frequency of light) was successful in explaining the ionization process 

by using a simple picture: an electron is ejected from an atom as soon as a photon 

with an energy greater than E. is absorbed. The electron’s energy is the difference 

between the photon’s energy and the binding energy to the nucleus which the photon 

needs to break apart. 

However, beginning around 1980, new lasers were developed that were intense 

enough (intensities above 10r3VV/ cm2) to send thousands or even millions of photons 
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through a typical atomic cross section (IO-i6cm2) during a pulse of a picosecond 

or less. As a result of atomic physics experiments with these more intense lasers, 

a different view of photoabsorption was required. The experiments were mostly 

done on noble gases, such as neon or xenon, at around 15 Torr maximum pressure 

(5 x 1017atoms/cm3). These experiments uncovered several surprising effects, which 

will now be described, that are relevant to atomic stabilization. 

The first of these discoveries is called above-threshold ionization [22,23]. It was 

shown that an additional term should be added to the energy conservation mentioned 

in the previous paragraph, in case of strong laser fields. In early experiments, energy 

spectrum of the emitted electrons in a strong-field with intensities above 1013W/cm2 

was examined. Several peaks were seen, equally spaced by the photon energy FLW. 

This is instead of a single peak in the weak-field, which hints that the atom in a 

strong field is supersaturated with photons. It was noted in experiments with rela- 

tively long pulse lengths that the lowest such peaks may disappear as the intensity 

is raised. This effect has been attributed to an extended form of the energy con- 

servation, which includes the ponderomotive potential EP. The energy conservation 

now becomes Ed = EO + Ntiw - EP, where N is the number of photons absorbed and 

EP CC I/w2 is the average energy associated with the classical oscillations of an ionized 

electron in the laser field. The spectroscopy of above threshold ionization peaks and 

their substructure is an active area of study in atomic physics. 
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The second of these effects is called high-harmonic generation [24,25]. Harmonic 

generation is a term from nonlinear optics meaning the coherent emission of photons 

with shorter wavelength than the incident photons. The new wavelengths are shorter 

by an integer factor compared to the incident laser’s wavelength. These higher energy 

photons are typically produced by irradiation of special crystalline materials that can 

be damaged. Therefore the irradiation cannot be too intense. In contrast to normal 

experience in nonlinear optics, typically dealing with generation of up to third or 

fourth harmonics, more than 100 harmonics can be produced by a strong field which 

are generated by irradiation of gas atoms. This is considered a big number, since 

it is difficult to produce very-high harmonics. The explanation for this phenomenon 

is that the above threshold ionization electrons which became supersaturated with 

photons, rather than breaking free, are recaptured by the atom. When that happens, 

the electron gives up its energy all at once. The short wavelengths produced by this 

energy multiplier effect have valuable practical applications in studying the dynamics 

of molecules, surfaces and materials. Similar to above threshold ionization, high 

harmonic generation is an effect produced by supersaturating an atom with thousands 

of photons, and the basic theory of light and matter in a weak field needs to be 

extended since it no longer holds. 



32 

2.2 Numerical Methods to Analyze High-Intensity 

Laser-Atom Interaction 

As was mentioned in the previous section, the phenomena which were observed 

in the 1980s high-intensity laser experiments could no longer be explained using ex- 

isting analytical tools such as perturbation theory. Perturbation theory breaks up at 

around the intensity of I = 1013W/cm 2. Since the main body of these experiments 

have been carried out in the intensity range between lOi and 10’“W/cm2, with 

laser pulse durations in the vicinity of 1 - 10 picoseconds, it was evident that a new 

framework for analyzing these high-intensity laser atom interaction effects is required. 

Beginning in [2], computer programs were able to solve the time- dependent 

Schrodinger equation for certain simple potentials in low dimensions. In these cases, 

they permitted essentially exact analyzes of the quantum mechanical response of an 

electron exposed to both a strong time-dependent laser field and the static coulombic 

binding potential of the atom. 

Non-numerical approximations are also typically incorporated into numerical so- 

lutions of the time- dependent Schrodinger equation. For example, the electron is 

treated as non- relativistic and spinless, and the electric dipole approximation is used. 

This can be justified rather easily since the optical wavelength is much larger than 
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the size of the atom, so any spatial dependence of the electric field can be neglected, 

treating it as time-dependent only. A further assumption commonly made is that the 

electron’s motion is so nearly one-dimensional in a strong laser field (along the laser 

field’s polarization direction) that the other two dimensions can often be eliminated 

without harm. Laser polarization effects and angular distributions of emitted photons 

and photoelectrons can not be modeled that way, but in all other cases comparisons 

of 1D with 30 results and with experiments have shown that the one-dimensional 

assumption is satisfactory for accurate semi- quantitative modeling of strong-field 

ionization dynamics. 

To illustrate the points described so far, an example is given for the case of har- 

monic generation. Using all the simplifying assumptions described in the previous 

paragraph, one can use a simple numerical technique, such as the finite-difference, to 

solve the one-dimensional time-dependent Schrodinger equation describing a hydro- 

gen atom exposed to a high-intensity laser field: 

-za22 + xEof(t) sin(wt) - d& 1 @(x4) (24 

Note that atomic units (fi = m = e = 1) are used, and the potential is a “soft 

coulomb” in order to avoid a division by zero using a computer. Analysis such as this 

one will be covered in great detail in section 2.4, for the atomic stabilization case. 

Here, after numerically solving for the wavefunction $(x, t) on a one-dimensional 

grid containing 1000 points with a spacing of dx = 0.2, the expectation value of the 
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position was numerically extracted from the wavefunction, and the Fourier transform 

of the resultant oscillatory motion is shown in figure 2.1. The laser parameters which 

were used in this simulation are a wavelength of X = 78OOp2 and an intensity of I = 

2.0 . 1013W/cm2 (above the perturbation limit). The first few harmonics correspond 

to peaks in the graph. Note that only odd multiples of the fundamental frequency 

are generated due to symmetry. 

Among the leading figures to perform numerical studies, a work which began during 

the 1980s for understanding high-intensity laser ionization processes, are J.H. Eberly 

from the University of Rochester, S. Geltman from the University of Colorado at 

Boulder and K.C. Kulander from the Lawrence Livermore National Laboratories. 

Work is recently reviewed in Protopapas et al. 19971. 

Figure 2.1: Harmonic Generation: an example of the electron dynamics in an intense 
laser field. In the example above, a finite-difference scheme was used to solve the 
equation and find the harmonics that were created. The calculations are based on a 
one-dimensional model of a hydrogen atom that interacts with a high-intensity laser 
field. 
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2.3 Atomic Stabilization: From Predictions to Ex- 

periments 

Unlike other strong field effects, such as above threshold ionization and harmonic 

generation, in which the theory was required to further develop in order to explain 

the experimental observations, the opposite is true in the case of atomic stabilization. 

First came the theoretical predictions and only later the experiments to test these 

predictions. 

In ionization at low laser intensities, the probability that an electron is stripped 

from the core atom and becomes ionized linearly increases with intensity. This linear 

behavior can be verified using perturbation theory. The term atomic stabilixation 

refers to the possibility that at very high intensities, this pattern reverses itself. As 

the laser intensity is increased above a critical point, the ionization rate slows down 

dramatically, the laser itself starts working against the ionization and a new “stabi- 

lized” atomic configuration emerges. 

In the early predictions of atomic stabilization [27,28], a laser field of asymptoti- 

cally high frequency and high intensity was assumed. It was shown that under such 

conditions, the atom remains stable against both ionization and bound-bound tran- 

sitions because the Hamiltonian that describes the system (including the field-atom 
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interaction) is well represented as being time-independent in a convenient reference 

frame. Gavrila and co-workers then went on to develop a high-frequency Floquet 

theory to explain the stable atomic configuration which emerges. At the same time, 

numerical studies similar to the ones discussed in the previous section were performed 

and confirmed the stabilization effect. In the next section, such a numerical approach 

to study atomic stabilization will be described in detail. 

M.Gavrila, from the FOM Institute for Atomic and Molecular Physics in Am- 

sterdam, the Netherlands, formulated and organized for several years the majority 

of work on the theory of atomic stabilization. Much of these studies can be found 

in his book, Atoms In Intense Laser Fields [29]. On the numerical side, especially 

with regards to the solution of the time- dependent Schrodinger equation in order 

to examine stabilization for short finite laser pulses, Q. Su and J.H. Eberly have 

been actively involved in this field [11,30]. S.Geltman [13] recently commented on 

this work, critically claiming that non-monotonic variation of ionization probability 

with laser intensity is a normal expectation in any strongly coupled quantum system. 

However, the vast majority of researchers in the field believe that the effect has been 

numerically predicted, for finite pulses as well, beyond all doubt (as will be seen in 

this dissertation which supports [II], much of the confusions arise due to the strong 

sensitivity of stabilization to the pulse shape). Other contributions to the field are 

coming from various groups in England and the U.S. 11311. 
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On the experimental side, ongoing work by H.G. Muller and colleagues in the 

Netherlands exhibit results which are so far consistent with predictions for atomic 

stabilization. The first experimental evidence for atomic stabilization was reported 

in [32]. In these experiments the 5g circular Rydberg state in neon was prepared using 

a 1-ps, 286-nm wavelength, circularly polarized laser pulse, and the photoionization 

yield due to a second, 620-nm laser pulse of either 100-fs or 1-ps was studied. The 

decrease of the single-photon ionization signal can be explained by the population 

remaining behind in the 5g state, thus strongly indicating stabilization of this state. 

In [33], measurements are done using three laser pulses. The first laser pulse excites 

the circular 5g state from the neon ground state. The second pulse is the intense light 

pulse that leads to ionization (or lack of ionization due to stabilization). The third 

pulse is a long low-intensity pulse ionizing all of the remaining 5g population. The 

photoionization yields of these three pulses are detected and separated by electron 

spectroscopy. This extended experimental study was done to rigorously rule out 

alternative explanations, such as transitions to long-lifetime states that could act as 

ionization traps. Both the photoionization yield and the remaining population in the 

5g state were measured. It was found that the photoionization yield does not increase 

when the pulse peak intensity is increased above 60TW/cm2, and that a large fraction 

of the population remains in the 5g state instead. These results are consistent with 

predictions for atomic stabilization. 
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2.4 Modeling Atomic Stabilization 

In this section, numerical techniques which are used to model atomic stabilization 

with a finite pulse are introduced. The detailed description will be helpful for the 

continuation of this modeling in the next chapter. 

The starting point for any model of atomic stabilization is the time-dependent 

Schrodinger equation, 

(2.2) 

where $ is the wavefunction, H is the Hamiltonian and Fi is a universal constant. 

There is no loss of generality if the time-dependent Schrodinger equation is solved in 

atomic units (fi = m = e = 1). 

In a one-dimensional model for the laser-atom interaction, which are justified 

based on the simplifying assumptions described in section 2.2, the Hamiltonian H(x, t) 

contains a nonlinear term to describe the linearly polarized oscillating electric field 

E(t) along with the kinetic energy (second derivative in space) and the potential 

energy V(x): 

H(z,t) = --is + V(x) + zE~f(t) sin(w-6) (2.3) 
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To eliminate any external effects which might introduce complications to the sys- 

tem, such as infinite number of bound states in a coulomb potential, it was decided 

to work with a short-range potential which can be tuned to support a single bound 

state. This potential, namely V(s) = -Vo exp(-s2/x$, is a model for a negative 

atomic ion. The potential parameters were set at Vo = 0.18 and x0 = 7.0225, one 

of several possible combinations so that the potential supports only a single bound 

state. The tuning procedure is similar to what was done in [34]. In order to compute 

the initial condition, which is the wavefunction $ at this bound state, any time- 

dependent expression is taken out of the time-independent Schrodinger equation and 

the time-independent Schrodinger equation is solved: 

[ 

1 d2 X2 
--- - Voexp -2 

2 ax2 ( I xo ti=-fw (2.4) 

This is an eigenvalue problem. The eigenfunction corresponding to the only nega- 

tive eigenvalue (namely, the bound state) constitutes the initial wavefunction, which 

is the ground state of the system before the laser is switched on to start the ionization 

process. For the potential function parameters chosen above, the ground state energy 

(the negative eigenvalue) comes out to be -0.0933 au. The eigenvalue problem was 

solved using a standard Eispack routine which computes the eigenvalues and eigen- 

vectors of a symmetric tridiagonal matrix [35]. 

Substituting (2.3) into (2.2), the time-independent SchrGdinger equation with an 
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exponentially decaying short-range potential becomes: 

.W(x, $1 
[ 

X2 z dt = --i& + xEof(t) sin(wt) - V0 exp -z i I $(z:, t) P-5) 
This equation will be numerically solved, using finite-difference and Fourier meth- 

ods, for several laser intensities, i.e. by setting (Eo = fi), i = 1,2, . . . and using the 

laser frequency w as the input parameter. 

Now it is necessary to choose pulse shape f(t) and pulse duration, unless it is 

decided to vary the shape as a parameter (along with the frequency). As in [ll], the 

commonly used procedure is to switch the laser on and off smoothly, according to 

f(t) = sin2((n/2) x t/Tl) for 0 5 t 5 Tl, f(t) = 1 while the laser is on (Ti 5 t 5 572) 

and switching off according to f(t) = cos2((7r/2) x t/(T3 -Tz)) for T2 5 t 5 T3. In the 

numerical simulations reported here, 3-10-3 pulses (3 cycles turn-on, 10 cycles fully 

on, 3 cycles turn-off) were used. The time period of each cycle is 27r/w (w is the laser 

frequency). 

Care should be taken with respect to the boundary conditions. In [11,30] sim- 

ulations were done specifically for a fixed high frequency value which promoted the 

ground state well into the continuum. For that particular case, the grid was large 

enough and no forcing boundary conditions were needed. However, in the current 

studies which include a large range of frequencies, the ground state of the grid walls 
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was found to interfere with the calculations below a certain frequency threshold. This 

caused a false stabilization peak to appear below this threshold (presumably, a numer- 

ical artifact since it disappears as we decrease dx). This prompted the use of either 

huge grid sizes, which is least desirable, or any other method such as mask functions, 

absorbing potentials, or a dilation transformation so that the time-dependent wave- 

function will vanish in the limits as x + fco at each time step in the calculation. 

Mask functions were chosen, taking a sin0.2(x) shaped mask function and multiplying 

with it the wavefunction at the grid edges. In addition, the possibility for a false peak 

should not be forgotten when working with low frequencies close to the top of the 

potential well. 

Finally, the calculations were done with the following set of numerical parameters 

in addition to the ones mentioned above. For the spatial grid, N, = 1000 points are 

taken (or N, = 1024 when Fourier representation is employed). For the mask function 

region, 100 grid points are used on each side. Grid spacing is dx = 0.1. For the time 

grid, Nt = 16,000 steps are used corresponding to a 3-10-3 pulse (total of 16 cycles) 

in which each cycle contains 1000 time steps. Time spacing is determined by the laser 

frequency, so that dt = T/ndt where T is the time-period of a cycle obtained from 

the frequency and ndt = 1000 time steps per cycle. Unless noted otherwise, atomic 

units are used for all these parameters. 
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Figure (2.2) shows the end-of-pulse ionization vs. intensity plots (stabilization 

curves) for two different laser frequencies (or, wavelengths). The curves were obtained 

by solving the time-independent Schrodinger equation for $f(~, Td), where Td is the 

duration of the pulse. After the pulse duration is over, $~f is projected onto $+ so 

that p0 = ) < $~f ) $+ > ) 2 is the probability of the final wavefunction being in the 

ground state. 1 - p0 is plotted as a function of intensity, after solving the time- 

independent Schrodinger equation repeatedly for different intensities, as a measure 

of the ionization rate. Full ionization is achieved at 1.0. For low intensities, one can 

see the expected linear response which is also predicted using perturbation theory. 

For high intensities, however, a stabilization structure can be seen whereby the laser 

interferes with the ionization process and the ionization is suppressed. Perturbation 

theory breaks down and fails to explain the behavior at such high intensities. 

2.5 Understanding Atomic Stabilization 

In this section, some of the key points based on which atomic stabilization can be 

explained are examined. Finally, some aspects which were well understood and some 

which were not that well understood prior to this dissertation are stated. 

It is instructive to first start with a simple analytical analysis, in which the elec- 

tron interacts only with the laser light, to physically understand the motion of an 

electron inside an electric field. Examining this zero-order scenario is essential for 
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Figure 2.2: End of pulse ionization l-p0 as a function of laser intensity, for two 
different frequencies. The 16-cycle pulse that was used consists of a 3-cycle smooth 
(sine-squared ramp) turn-on, a 3-cycle smooth turn-off and lo-cycle constant laser 
field inbetween. Ionization suppression at high intensities is evident in both cases. 
Left curve corresponds to (k’ = 0.152 (A = 3OOOA) and right curve corresponds to 
w = 0.228 (A = 2OOOA). In atomic units, I = 1.0 corresponds to I = 3.5 x 1016W/cm2. 

gaining intuition and constructing the proper foundations being used in what follows. 

In a classical picture, a single one-dimensional electron in an electric field (no 

coulomb potential) obeys the Newtonian equation of motion: 

rns = -eEof(t) sinwt (2.6) 

For simplicity, special units in which m = e = 1 are used (see previous section) and 

the laser light is assumed to be steady with no pulse envelope. Integrating twice, one 

gets: 

Eo x = -sinwt 
W2 

(2.7) 
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Therefore, the electron is swinging in an oscillatory motion around the center with 

an amplitude (known as the quiver amplitude in the literature) of 010 = Eo/w2. This 

motion is often called quiver motion, since for a realistic choice of parameters such 

as X = 78OOfi and 1 = 2 . 1014W/cm2, one gets 010 - 80~0 which means oscillations 

with an amplitude around 80 times the size of an atom with a most energetic motion. 

This simple dynamical picture forms the basis of understanding of many strong-field 

phenomena. In high-intensity laser experiments, performed on noble gases at around 

15 Torr maximum pressure (5 x 1017atoms/cm3), such an oscillatory motion of the 

electron contributes to the detected photoelectron energy spectra. It is precisely this 

motion which is responsible for adding the ponderomotive potential which was dis- 

cussed in section 2.1. 

The above analysis motivates the use of a frame of reference transformation, in 

which the electron becomes the center of motion rather than the nucleus. This is 

done by the transformation z + x + o!(t), where a(t) = ~0 sin wt. It is known as the 

Kramers-Henneberger (K-H) transformation, under which the Hamiltonian of section 

2.4 becomes: 

H(x, t) = -i-g + V(x + a(t)) (2.8) 

i.e., it describes the motion of the electron in an oscillatory potential. In the high 

frequency limit, this potential may be replaced by its time average: 

v&H(X) = f s,” V(x + a(t))& (2.9) 
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and the remaining Fourier components of V(s + a(t)) are treated as a perturbation. 

When ~0 is large, the effective potential has two minima close to IC = Z&O. The cor- 

responding wavefunctions of the bound states are centered near these minima, thus 

exhibiting a dichotomy. 

In figure (2.3), it is seen how the cycle-averaged, effective potential in the K-H 

frame develops a double well as the intensity increases. 

Figure 2.3: Development of a double well in the effective cycle-averaged potential 
VK-H. CEO is increased, from left to right: CIQ = 1.0, ~0 = 7.5, cllo = 12.5 

In figure (2.4), a map of the eigenenergies of the averaged cycle potential used 

throughout this dissertation is plotted as a function of the quiver amplitude ~0. 

Figure (2.4) is an attempt to provide a general explanation for atomic stabilization 

with finite pulses. For short frequencies, a multiphoton process (such as a 3-photon 

promotion from the ground state) is the mechanism for ionization. As seen in figure 
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Figure 2.4: Map of the eigenenergies of the cycle-averaged potential used throughout 
this dissertation. Formation of laser-induced states (dashed lines) in addition to the 
initial ground state, as the quiver amplitude a0 is increased, can be seen. 

(2.4), as 010 grows, new laser induced states are formed which are responsible for 

the interruption in the ionization process. This explains atomic stabilization at low 

frequencies (e.g., [34]). H owever, this picture does not provide any explanation of why 

atomic stabilization occurs at higher frequencies, in which a single strong photon 

promotes the ground state well above the potential well, into the continuum. In 

[11,30], attempts are made to relate this type of stabilization to Gavrila’s Floquet 

theory which is valid for infinite pulses (high frequency continuous-wave laser fields). 

Chapter 4 provides a proper explanation for atomic stabilization at high frequencies 

for finite pulses. 
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Chapter 3 

Genetic Search for the Optimal 

Frequency to Stabilize Atoms 

This chapter follows step by step, starting from the point reached at the end of 

section 2.4 (figure 2.2), the details of the computational study which led to illustrate 

the true physical interpretation surrounding atomic stabilization at high frequencies. 

First, the genetic algorithm succeeds in locating an optimal frequency to stabilize 

atoms. Then, it is found that stabilization does not increase as the frequency is in- 

creased. Finally, convergence to a high-frequency limit in the stabilization structure is 

obtained. Chapter 4 will provide the explanation to the atomic stabilization structure 

at high frequencies. 
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3.1 Introduction 

The first part of this chapter shows the procedure used to find the optimum 

frequency via genetic algorithms, for which an atomic stabilization effect is maximum. 

It will be found that this approach actually leads to important results concerning the 

stabilization structure produced. It is possible to search frequency space to locate 

this optimum based on the following fitness function: 

f(w) = (PoIi+l -PO&) + (poIi+2 -p@) + ... + (poIi~l -poli) + (poIi-2 -pal,) + ... 

(3.1) 

The quantities in this expression, resulting from numerically solving the time- 

dependent Schrodinger equation as was as done in section 2.4, are calculated in par- 

allel using the methodology outlined in section 1.4.3. A systematic search for the 

optimal frequency w can then be conducted. Since the search is computationally 

intensive, three different optimization techniques are compared so that the most ef- 

ficient one can be recommended for future studies. The three methods are simple 

genetic algorithms, simulated annealing and micro genetic algorithms. 

Section 3.2 describes the genetic algorithm implementation. Section 3.3 reports 

the results of this study and the comparison between the three optimization methods. 

Section 3.4 examines the implication of the results, in relation to other studies which 

were reported in the literature on the same problem and parameters. It then explains 

the conceptual error in [ll] and gives the correct calculation which reaches the high 
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frequency limit. Section 3.5 concludes this chapter with an outlook towards chapter 

4, which provides the explanation to the new findings. 

3.2 Genetic Algorithms on a parallel platform 

This section follows the one-frequency modeling which was outlined in section (2.4) 

and extends it to a many-frequency modeling, using parallel micro genetic algorithms, 

to locate the optimal frequency that achieves the most pronounced stabilization effect. 

Writing the expression (3.1) in more detail, the goal is to maximize: 

f(w) = -iv XPOI, +Por,+l +por,+, + . . . +pOl,+,,, +pol,-, +poI,-, + ... +poI,-,,, 
(3.2) 

given ~0, (Ii is the intensity and p0 is the projection to the ground state) and the 

projections to the ground state of the neighboring intensities, namely pOI,+, , PO~;+~, . . . 

> POri-1, POTi-,, a.0 , where N is the number of neighboring intensities. This quantity 

is greatest for the most pronounced minimum in the curve, centered at I = Ii. It is 

frequency dependent and maximizing this function guarantees to locate the optimal 

frequency w for which the minimum caused by stabilization is most pronounced. Pos- 

sible ways to perform the search for optimal frequencies are trial-and-error, interval- 

halving and random search techniques. 
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There are several reasons why a genetic algorithm was chosen for the implemen- 

tation. First, it is impossible to know a priori how many minima and maxima are 

hidden in the fitness function. By trial and error runs it was possible to observe that 

the function is not simply monotonic and therefore there are optimal frequencies. 

However, there is a likelihood to miss the best frequency in an unexpected place, 

since there might be several resonant frequencies. Second, it is laborious and a waste 

of resources to perform a trial-and-error search when the evaluation of the fitness 

function is costly. An automated search would be beneficial. Third, in simulations of 

this kind, an extension to several other laser parameters such as pulse shape and pulse 

duration should be taken into account for future implementations. While interval- 

halving and similar techniques (Fibonnaci search, golden search) are simple ways to 

perform an automated search and in that regard offer an ideal possibility to meet 

the second requirement, they are extremely inefficient in multi-modal functions (first 

requirement) and more than one parameter (third requirement). 

Since the evaluation of the fitness function is costly, a variant of genetic algorithms 

which can offer a saving in the number of function evaluations is most desirable, par- 

ticularly for the simulations in this paper. With micro genetic algorithms (see section 

(1.4.2)) it might be possible to reduce the number of function evaluations. There- 

fore, the micro genetic algorithm was implemented in addition to the simple genetic 

algorithm and simulated annealing for the comparative study done in the next section. 
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In evaluating the fitness function, it is possible to perform the calculation for 

several intensities all at once. A parallel platform is most suited for this task, since 

different intensities can be distributed among several processors that perform the 

same calculation, each processor working on a different point or set of points in a 

stabilization curve. 

Message passing interface can be used to communicate between the different pro- 

cessors and is currently available on almost all parallel platforms. Since the calculation 

for each intensity is done independently and only at the very end the fitness func- 

tion is calculated based on information from all processors, it is desirable to reduce 

the amount of communication. In this problem, it is possible to refrain completely 

from any need of communication, assuming that enough processors are available to 

handle each point in the minimum and surrounding intensities. Therefore, each in- 

tensity is assigned to a single processor and a synchronizing barrier makes sure that 

all processors are done calculating their end-of-pulse probabilities before proceeding 

onwards. Only then the master processor (proc. 0) collects the results from a file and 

calculates the fitness function. This procedure is a particular implementation of the 

master-slave prototype outlined in section (1.4.3). 

The various steps in t,he simulation are as follows: 
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1. Generate an initial population of frequencies WY), We’, L$), . . . 

2. For each a?’ in the population, solve the time- dependent SchrSdinger 

equation in parallel on (N+l) processors for (N+l) given intensities, 

&,Lfl,~ii+2, ... ,I+1, L-2, ~.. ) to obtain end-of-pulse ionization proba- 

bilities PO& ) POI~+~ 7 ~or+~, . . . , PO~,-~, p01,-, , . . . and evaluate the fitness 

function fj’“’ = -N X POI, +POr,+, +POl,+, + . . . +PO1,-, +p01,-~ + . . . serially 

on the master processor. 

3. Build next generation wjr) (in general tijk) for the kth generation) using 

crossover and mutation and evaluate new fitness function fj”‘. 

4. Stop when fbest--so--far does not improve substantially after several gener- 

ations. Print w* corresponding to f *. 

5. Go to step 3. 

To summarize, in order to maximize the fitness function, p0 is calculated for each 

intensity. This operation amounts to solving a single partial differential equation. 



53 

For a 16-cycles pulse, this can be achieved in approximately 150 seconds on an Ultra- 

Spare. Working on the UC Berkeley network of workstations, which is a collection 

of Ultra-Spares hooked together, it is possible to calculate all PO’S at once so that 

each evaluation function costs around 150 seconds. For the genetic implementation, 

a genetic algorithm driver written in FORTRAN was used [lo]. While a number of 

processors are used to calculate the fitness function, the master processor by itself is 

used to advance the simulation from one generation to the next until convergence is 

achieved. 

3.3 Experiments: Genetic Algorithms vs. Simu- 

lated Annealing 

The previous section described one possible implementation for searching fre- 

quency space, which seems to be most suitable for the given task. Beginning with 

the final results of the search (which is independent of the chosen method for the 

implementation), this section compares simple genetic algorithms with micro genetic 

algorithms and simulated annealing. 

To begin with, final results from the genetic algorithm search are reported. The 

genetic algorithm was tested for two cases to identify the optimal frequency to achieve 

maximum stabilization. In the first case, the goal was to find maximum stabiliza- 
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tion around I = 0.1 au (I L 3.5 x 1015W/ cm2). Surrounding intensities were taken 

to be at I = 1.5 x 101”W/cm2,1 = 2.5 x 1015W/cm2,1 = 4.5 x 1015W/cm2,1 = 

5.5 x 10’“W/cm2. In the second case, the optimal frequency for finding maximum 

stabilization around I = 0.2 au was calculated by the genetic algorithm. The fre- 

quency region is extended between A = 15OOp1 to X = 35OOp1, since above that would 

promote the ground state to below the top of the potential well and below that the 

stabilization effect disappears. The results in figures 3.1, 3.2 were obtained after 

250 evaluation functions of the genetic algorithm run, when strict convergence was 

achieved. This was done with a population size of N = 50, stopping the calculation 

after 5 generations. Genetic algorithm parameters were set to: crossover percentage 

of 0.5, mutation percentage of 0.02, tournament selection and elitism was used (best 

individual replicated into next generation). The frequency region between A = 0 to 

X = 35OOA was divided into 1024 equal segments. In both figures 3.1 and 3.2, the 

reported optimal frequency was obtained after repeating the computational experi- 

ment for ten times. 
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Figure 3.1: End of pulse ionization as a function of laser intensity, for several distinct 
frequencies. Same parameter values as in figure 2.1 apply. X = 1912.521 corresponds 
to the best frequency the genetic algorithm found so that a stabilization structure 
surrounding I = 0.1 can be observed. 

Several observations are important before initiating a comparative study between 

different stochastic search strategies. First, with only 50 function evaluations, near 

optimality was achieved in all repeated runs. That is, after 10 consecutive runs of 

the genetic algorithm for the second test-case (figure 3.2), the average of the best- 

so-far-fitness was 0.544 corresponding to the frequency of X = 2223.4A while the 

lowest and highest values of the best-so-far-fitness corresponded to the frequencies 

X = 2209.7A and X = 2242.921, respectively. This difference is of no importance from 

the experimental point of view. Therefore, strict optimality is not always necessary 
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Figure 3.2: Same as figure 3.1, for a different surrounding intensity. X = 2242.9A 
corresponds to the best frequency the genetic algorithm found for a stabilization 
structure surrounding I = 0.2. 

and stopping the calculation after only 50 function evaluations is satisfactory. Sec- 

ond, each function evaluation takes several hours on the parallel platform which was 

used. While conducting a laboratory experiment, it can not be afforded to spend 

several days performing repeated runs in the laboratory; instead, the aim will be 

to use as few function evaluations as possible along with a scheme which is reliable 

enough to meet its purpose. However, for the comparative analysis conducted in this 

paper, numerous repeated runs with the genetic algorithm were performed and 664 

distinct function evaluations were gathered. This enabled to plot the fitness function 

(figure 3.3) and continue the handful of runs needed for the statistical analysis using 

a fourth-order interpolating polynomial, after it was checked that identical results 

are achieved using the parallel platform and the interpolating function for performing 

fast function evaluations. It is now possible to check whether micro genetic algorithm 
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or simulated annealing can offer a reduction in computational cost compared to the 

simple genetic algorithm which is used. 

In figure 3.4, micro genetic algorithm performance is compared with both the sim- 

ple genetic algorithm and simulated annealing for figure 3.2. The number of function 

evaluations is taken as a measure of computational effort and the best-so-far fitness 

is the measure of performance. Average performance at each generation is of no in- 

terest in micro genetic algorithms, therefore the best-so-far-fitness is the appropriate 

criterion for the comparison. Population size for the micro genetic algorithm was 

chosen to be 5 along with ,a crossover percentage of 0.5. In the micro genetic algo- 

rithm, no mutation is performed since a random shuffle guards from fixation. For 

the simulated annealing approach, a package based on [36] was used. The simulated 

annealing driver was attached to the stabilization problem of this paper with initial 

values recommended for the test function in [36]. Th en, the parameters were further 

tuned to best locate the optimal frequency which was achieved by the genetic algo- 

rithm, starting from an initial guess of X = 15OOp1. Simulated annealing parameters 

were set to: initial temperature of 5.0, with a decline in temperature T according 

to T(i + 1) = RT x T(i), RT = 0.85, where i is the ith iteration (each iteration 

containing 5 function evaluations with the current temperature). With a simulated 

annealing, unlike genetic algorithms, one starts from a single initial guess within the 

frequency range. Therefore, 50 runs were performed after dividing the region into 50 
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equally spaced points so that in the end, all parts of the region will be taken into 

account. 

Examining the average and standard deviation of the 3 methods (figure 3.4), it 

is seen that they are all reaching the same optimum value in about the same speed 

and the differences are small. There is no gain in applying micro genetic algorithms 

for this particular function, although it might be beneficial to implement this scheme 

along with the simple genetic algorithm for other functions. Simulated annealing also 

performs well for this particular function. Simple genetic algorithm is most reliable 

(least standard deviation) and can be safely used to search for the optimal frequency 

in a systematic way. 

3.4 Existence of a High Frequency Limit 

The results of the final section indicate that an optimal frequency exists for stabi- 

lizing atoms surrounding a given intensity. This frequency is not necessarily high. In 

figure 7 of [ll], it is observed that as the frequency gets higher the degree of stabiliza- 

tion increases. There is no indication of an optimal frequency, and in particular the 

plot is claimed to be true for any given intensity. Obviously, there is a disagreement 
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Figure 3.3: A plot of the fitness function, which was not known a priori, based on 664 
function evaluations gathered in the course of the genetic algorithm implementation. 
It is seen that the function is multi-modal in the desired frequency range, and can be 
considered continuous to a good approximation. Therefore an interpolating function 
can be used in further function evaluations which are necessary for a comparative 
analysis. 

which needs to be resolved. 

In this section, in order to resolve the disagreement, a study is conducted to repli- 

cate Su’s results. Using Su’s potential and parameters, identical results are obtained. 

It is found that Su’s figure 7 is based on a limited set of data points which is mislead- 

ing and do not indicate the correct behavior at all. Su’s figure 7 is recalculated with 

the full set of data points, which agrees well with the results of the genetic algorithm 
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Figure 3.4: Performance comparison of simple genetic algorithm (solid line), sim- 
ulated annealing (dashed-dotted line) and micro genetic algorithm (dotted line) to 
find the optimal frequency for the bottom case in figure 3. The average and standard 
deviation of 50 consecutive runs in each method was taken, and performance of the 3 
methods based on these measures show they are almost equally successful in finding 
the optimum. For the particular function to be optimized in this paper (figure 3.3), 
the micro genetic algorithm does not seem to result in a reduction of computational 
cost. 

in the previous section. A conceptual error in performing the calculation with only a 

single intensity is found to obscure the exact behavior. Correcting this error, a high 

frequency limit for stabilization with a finite pulse is found to exist. 

The starting point of the comparison with Su’s results is figure 3.5, which is 

identical to figure 5 in [ll]. In this figure, a stabilization structure is examined for 

the frequency w = 1.0~. Note that Su is using a one-point delta potential instead 

of the short-range potential used in sections 2.4, 3.2, 3.3. The exact form of the 

one-point delta potential is: 
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Figure 3.5: Replicating figure 5 of [II], stabilization structure for the frequency w = 
1.0. Original on the right, replica on the left. Same parameters as in the reference 
were used. 

V(x) = -B6(z) (3.3) 

Where B = w x D, w is the width of a square well and D is the depth. In the limit 

w + 0 the square well becomes a delta potential and the potential supports a single 

bound state energy give by Wb = -B2/2. Only one grid point is used to describe this 

delta potential. 

Since both potentials bound a single state, there is no qualitative difference be- 

tween them. Since the potential well extends higher up in Su’s potential, higher 

frequencies are needed for the stabilization, but the same effect is obtained in both 
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cases. Note the similarities between this figure and figure 2.2 in the previous chapter. 

Next, figure 3.6 is a replica of Su’s figure 7. In this figure, it is seen that the 

degree of stabilization increases as the laser frequency is increased. This also seems 

to fit the theoretical predictions in [29] for the continuous-wave laser fields (with no 

ramp). However, in this figure only one intensity is used (I = 16.0~). This single 

intensity can not be used to conclude something about the stabilization effect, since 

the stabilization curves are shifting to the right as the frequency goes up. Figure 3.7 

unveils the correct behavior. It is clear that for 1= 16.0~ the ionization probability 

decreases, with no connection to the stabilization effect. 

0 1 2 3 4 
Frequency 

Figure 3.6: Replicating figure 7 of [II]. Original on the right, replica on the left. 
Ionization probability (1 - ~0) is plotted vs. the frequencies (in au) for a single 
intensity, that of I = 16.0. Same parameters as in the reference were used. 
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Figure 3.7: The stabilization curves (ionization probability as a function of intensity) 
for several frequencies, which correspond to figure 3.5. It is clear that a single intensity 
(I = 16.0) can not predict the full stabilization behavior. 

Figure 3.7 is disturbing, since the genetic algorithm calculations showed the ex- 

istence of an optimal frequency which can not be related to the theory [29]. Indeed, 

in both [ll] and [30] the goal was to relate numerical studies with finite pulses to the 

well-founded theory of atomic stabilization which has been developed in the past 20 

years for continuous wave pulses [29]. Therefore, an adequate explanation is to be 

found. It was discovered that using a different picture, stabilization curves do not 

move to the right as the frequency is increased. Instead of performing calculations at 

different intensities, ionization probabilities should be calculated as a function of ao, 

which includes information about the laser frequency as well. Following this logic, 

figure 3.8 is obtained. 
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Figure 3.8: The stabilization curves (ionization probability as a function of ao) for 
several frequencies, which correspond to figure 3.7. The frequencies from top to 
bottom (in au) are: w = 1.0,2.0,3.0,4.0,8.0. Note that ~0 is used instead of the laser 
intensity as the independent variable. 

Since with Su’s one-point delta potential (3.3) it is impossible to check conver- 

gence by decreasing the spatial grid spacing from high to low, because the potential 

changes as the step size is modified, the short-range potential used throughout this 

dissertation is preferred. Therefore, going back to the short-range potential used in 

section 2.4, figure 3.9 is analogous to figure 3.6 and figure 3.10 is analogous to figure 

3.7. From now on, all results are generated from the short-range potential. This also 

enables the use of numerical techniques which converge faster, i.e. that permits using 

a larger spatial grid spacing. With Su’s one-point delta potential, the choice of spatial 

spacing dx is limited due to the potential. 
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Figure 3.9: The stabilization curves (ionization probability as a function of intensity) 
for several frequencies, for the short-range potential used in section 2.4. 
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Figure 3.10: The stabilization curves (ionization probability as a function of ao) for 
several frequencies, for the short-range potential used in section 2.4. The frequencies 
from top to bottom (in au) are: w = 0.2,0.25,0.33,0.5,1.0. Note that a!~ is used 
instead of the laser intensity as the independent variable. 
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A second important observation is that instead of preserving the number of cycles 

in the pulse, as Su has done, one needs to preserve the time duration of the pulse, 

being the physical quantity. Figure 3.11 implements this observation for the same 

parameters used in figure 3.10. It is found that above a certain frequency, the stabi- 

lization structure is converging to the same result. It is the high frequenq limit of 

stabilization using finite pulses, which is yet to be verified experimentally. 

1 

5 10 15 20 25 30 35 40 
Quiver Amplitude 

Figure 3.11: The stabilization curves (ionization probability as a function of ao) 
for several frequencies, for the short-range potential used in section 2.4. This time, 
however, time duration of the pulse is preserved as the frequency is increased, instead 
of number of cycles in a pulse. The frequencies from top to bottom (in au) are: 
w = 0.25,0.5,1.0,2.0. The existence of a high frequency limit is clearly seen, which 
is the topic of the next chapter. 



3.5 Conclusion 

In this chapter, through the use of genetic algorithms as a systematic search 

method, it was possible to obtain a detailed picture of atomic stabilization using fi- 

nite pulses. Finding an optimal frequency for stabilization was in contrast to [ll], 

in which not enough parameters were used. The discrepancy of the correct results 

with the known existing theory [29] f or continuous-wave pulses led to the idea that 

one needs to preserve the time duration of the pulse as the frequency is increased. In 

addition, QIO should be used as the independent variable instead of the intensity, since 

it includes information about both the laser intensity and frequency. 
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The result that was reached, the existence of a high frequency limiting case for 

atomic stabilization using finite pulses, will be explained in chapter 4. 
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Chapter 4 

Non-Adiabatic High Frequency 

Theory 

The goal of this chapter is to explain the high frequency limit structure found 

for atomic stabilization. Section 4.1 describes the motivation for applying a (t,t’) 

formalism to connect between the theory of adiabatic stabilization of Gavrila and the 

stabilization structure seen in figure 3.10. Section 4.2 introduces numerical methods 

to solve the time-dependent Schrodinger equation. It serves as an important step 

prior to introducing the (t,t’) method, since the (t,t’) is based on variable separation 

and the exploitation of Fourier methods to analyze problems with Hamiltonians which 

are periodic in time. In section 4.3, the (t,t’) method is described. The non-adiabatic 

high frequency theory, is then formulated in section 4.4, using the (t,t’), to bridge the 

gap between the theory of adiabatic stabilization of Gavrila and the high frequency 



limit structure of figure 3.10. 

4.1 Motivation 

Computational studies to model atomic stabilization using finite pulses, i.e. pulses 

with finite duration turn-on and turn-off ramps to describe the pulse envelope, have 

been carried out by several researchers including Su, Eberly and Kulander. The most 

recent studies prior to this dissertation are reported in [11,30,13]. This type of sta- 

bilization, often coined “dynamic stabilization”, is important to model since realistic 

pulses in high power laser experiments possess on and off switching ramps. If such 

pulse shapes can contribute to the stabilization effect, it would be beneficial to un- 

derstand the reasons and means of such a contribution. 

Much work has been conducted for over 20 years to predict and study atomic sta- 

bilization by using continuous-wave laser pulses. Gavrila and co-workers developed a 

high-frequency Floquet theory within the Kramers-Henneberger gauge [28,29] which 

unifies many of the key points already mentioned in section 2.5 into one theoretical 

framework. This framework uses the Floquet analysis, in which the effective poten- 

tial reached after the Kramers-Henneberger transformation (equation 2.8) is Fourier 

expanded, in order to extract the time-averaged cycle potential (equation 2.9) as the 

first order contribution. Such an expansion is possible assuming the Hamiltonian 

is periodic in time. With a continuous-wave laser pulse, this assumption is clearly 
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justified. This type of stabilization, often termed “adiabatic stabilization”, has been 

modeled extensively. It has been widely accepted as the basis for understanding 

atomic stabilization seen in continuous-wave laser pulse experiments. 

It is therefore not surprising that Su and co-workers attempted to relate “dy- 

namic stabilization” to the well understood “adiabatic stabilization” in their studies. 

It should be noted that these terms were introduced by researchers in order to dis- 

tinguish between the two ways of modeling (one with a finite pulse, the other with a 

continuous-wave pulse). The connection between the two is therefore an important 

issue which motivated much of Su9s work. This is also the motivation in section 4.4 

of this dissertation, bridging between the theory of adiabatic stabilization of Gavrila 

and the structure obtained in figure 3.10. 

However, an important tool that is essential in order to successfully connect be- 

tween the two models mentioned above, was reported elsewhere [37,38]. With the 

(t,t’) method, which was introduced in these references, it is possible to Fourier ex- 

pand not only the time t as was done in the Floquet analysis by Gavrila and co-workers 

but also the time t’ which exists in the pulse envelope, used in “dynamic stabiliza- 

tion”. The (t,t’) is a numerical method which attempts to treat the time in equal 

footing as the space. It can be viewed as an extension of an earlier idea, which was 

first introduced by formulating the Split Operator method [39] and later was carried 
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out in other Fourier based methods [40]. The motivation in the introduction of these 

methods was to separate between time propagation and space representation, Fourier 

expanding in space in order to achieve a reduction in computational cost. There- 

fore, section 4.2 discusses Fourier-based (spectral) methods prior to section 4.3 which 

introduces the (t,t’) method. 

4.2 Numerical Methods 

In this section, numerical methods to directly solve the time-dependent Schrodinger 

equation which have been used in atomic stabilization studies are briefly reviewed. 

The primary goal is to prepare for the introduction of the (t,t’) method. The sec- 

ondary goal is to understand the advantages and limitations of several methods and 

to recommend a robust method for modeling atomic stabilization. 

In an atomic stabilization problem, as well as in other studies of time-dependent 

processes including above threshold ionization and harmonic generation [41], the 

Crank-Nicolson method was used with a computational effort of O(N) [42] since 

the LU decomposition to invert the resulting tridiagonal matrix only costs N opera- 

tions Therefore, even the second order difference scheme [43] (an explicit version of 

the implicit Crank-Nicolson method) will not result in less operations. The Crank- 

Nicolson method, first used in [26] t o solve the time-dependent Schrodinger equation, 

uses a finite-difference representation with the following propagator: 
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e -iHAt = (1 - iHAt/2)(1+ iHAt/2)-i + 0(At”) (4.1) 

Note that in the right-hand side, all spatial derivatives in H are numerically cal- 

culated using a finite-difference approximation. For many years, the Crank-Nicolson 

method dominated this field and was used for practically all purposes, due to its 

simplicity and prominent features (being second order, norm preserving and uncon- 

ditionally stable) among other finite-difference competitors. 

During the early 1980s new methods were proposed [39,40] for separating time 

and space (which are intimately connected in the Crank-Nicolson) and use a more 

efficient spatial representation to treat space. In Feit’s split operator method, time 

propagation is performed by approximating the propagator as follows: 

,-iHAt = e -iKAt/2,-iVAt,-iKAt/2 + o(&“) 

where H = V+K, H is split into the potential term V and the kinetic term K which 

includes all spatial derivatives. The spatial derivatives will then be numerically cal- 

culated by performing a fast Fourier transform on the wavefunction $J, multiplying 

the result by a diagonal matrix, then transforming back to configuration space by 

an inverse fast Fourier transform. This method was found to be superior in many 

problems which allowed a better spatial representation using a Fourier representation 
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instead of the finite-difference (meaning a reduction of N, the number of grid points 

in space, compared with what is needed for accurate finite-differencing). In these 

problems, one can sometimes reduce N by a factor of 5 (for example, in the simple 

harmonic oscillator potential). A point can be reached in which the cost for a Fourier 

representation, being O(NZogN), can be superior to the O(N’) in finite-difference 

representation provided N is much smaller than N’. Note that as far as the time 

propagation, both the Crank-Nicolson and the split operator method are second or- 

der in time. While the spatial variable has been dealt with efficiently in the split 

operator method, both are equally inefficient with regard to the time propagation. 

To treat the time,propagation problem, a new scheme was proposed [44] which 

unfortunately works for only time-independent Hamiltonians without further modifi- 

cations. An efficient propagator for stationary Hamiltonians was found by using the 

Chebychev expansion; 

e -iHAt M 5 a,cp,(-iHAt) (4.3) 
n=O 

where a, are the expansion coefficients and (Pi are the complex Chebychev poly- 

nomials. By using a global solution to the time variable, rather than a local finite- 

difference in time, the inefficiency in time propagation which exists in both the Crank- 

Nicolson and spectral methods (such as the split operator method) can be improved. 

However, in the Crank-Nicolson both space and time are intimately connected to 
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each other in a way that dictates a local representation for both. With the spec- 

tral method, since time is separated from space, in contrast to the Crank-Nicolson 

it is advantageous in some problems to transform from an explicitly time-dependent 

Hamiltonian to a stationary one. That way, one can use both a Chebychev propagator 

in time (being an efficient propagator) and a Fourier representation in space (being 

an efficient representation) as the recommended method for work to solve the problem. 

Using a hybrid “Chebychev-Fourier” scheme proposed by Baer, which was specif- 

ically implemented to model atomic stabilization in [15], it is possible to use dx = 2.0 

and d-t = 7r/2w, which are much bigger spacings then what was used in previous 

studies such as [11,30]. It solves the same problem and gives the same results in 

wave-packet calculations. In this proposed scheme, the wavepacket calculation is 

done in the Kramers-Henneberger frame, so that in each time step the instantaneous 

cycle-averaged (equation 2.9) potential is calculated before the propagation step. As 

far as speed considerations, this method even surpasses the Crank-Nicolson due to 

the large spacings allowed. As far as convergence and accuracy considerations, not 

only does this scheme give a solid 4-digit convergence, which can not be achieved 

using either the Crank-Nicolson or the split operator method, it is also recommended 

as an important tool for the diagnostic of the results since the evolution of the cycle- 

averaged potential in time can be conveniently calculated and followed by using this 

method. 
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4.3 (t,t’) Formalism 

There are many physical applications besides atomic stabilization, in which the 

Hamiltonian is explicitly time-dependent. The common solution for propagation in 

these explicitly time-dependent problems is to use very small grid spacing in time, 

such that within each time step the Hamiltonian H(t) is almost stationary. Consid- 

ering that these calculations are demanding with respect to computer time, whereas 

global expansion methods such as the Chebychev propagator are useful essentially 

only in time-independent Hamiltonians, alternative schemes are desirable in order to 

treat the time-coordinate accurately and efficiently. 

In the previous section, a problem-dependent solution was found to treat the 

Hamiltonian as stationary by calculating the cycle-averaged potential (working in the 

Kramers-Henneberger frame) at each time step. A general approach to transform 

the explicitly time-dependent Hamiltonian into a stationary one was introduced by 

Howland [45] in quantum scattering theory and later was discussed [46] in analogy 

to the stationary formalism used in classical mechanics. The first to implement it 

in a numerical study was Moiseyev [47] who applied the stationary formalism to the 

calculation of state-to-state transition probabilities for complex-scaled time-periodic 

Hamiltonians. The formalism was then developed [37,38] to be applied to general 

time-dependent Hamiltonians using a Chebychev propagator in time. 
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The main idea behind the (t,t’) f ormalism is to add another dimension to the 

problem, supplementing the time and space grids, thus enabling the Hamiltonian to 

be stationary so that an efficient propagation method can be used. This formalism 

can reduce the overall computational cost in some problems, depending on how much 

is gained, since adding a new dimension obviously requires more work. In addition, 

it can also be used as a powerful formalism (e.g. next section), in particular prob- 

lems in which one time is much slower than the other. An ideal candidate is a laser 

pulse interacting with molecules, in which the laser frequency is so high with respect 

to the slowly varying pulse shape that it is possible to neglect the high frequency 

oscillations which are produced as a consequence. Simplifying assumptions can then 

lead to neglecting time t with respect to time t’. One is then left with an extremely 

efficient scheme at no cost (i.e., without adding any extra dimension). 

The first step in the (t,t’) formalism is to add a grid in a new coordinate t’. The 

relation between the embedded wavefunction and the usual one subject to an initial 

state 9(x, 0) is defined as: 

Q(x) t) = SW b(t’ - t)@(x) t’, t)dt’ (4.4 -03 

where t’ acts like an additional coordinate in the generalized Hilbert space and 

@(x, t’, t) is the new wavefunction to be solved. Note that by definition, Q(x) t’, 0) = 

Q(X) 0) is the initial condition. @(n;,t’,t) is the solution to the time-dependent 
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Schrijdinger equation represented by the (t,t’) formalism: 

a ihglqx, t’, t) = Y-l(X) t’pqx, t, t’) 

The 31(x, t’) operator is defined for a general time dependent Hamiltonian by: 

?-l(X) t’) = H(X) t’) - ifig 

(4.5) 

(4.6) 

Note that this Hamiltonian is t-independent. The formal solution of equation (4.5) 

is then given by: 

@(x, t, t’) = e -w~wQ(x) 0) (4.7) 

The solution to the original problem is simply !P(z, t) = Q(x) t’ = t). Note that it 

is now possible to use a Chebychev propagator to advance in t-space, and a Fourier 

expansion in the t’-space grid to treat t’ and x on an equal footing. Each of the 3 

coordinates has its own grid and method, independent of the other. Thus, this can 

be viewed as an extension to the main idea behind the spectral methods which were 

formulated in the early 1980’s for use in quantum mechanics: separation of variables 

F81 ’ 

4.4 Non-Adiabatic High Frequency Formulation 

The difference between adiabatic stabilization and dynamic stabilization was dis- 

cussed in section 4.1. In this section, the theory needed to explain dynamic stabiliza- 

lGilbert Strang was the first to derive a split operator scheme for fluid dynamics, during the 
1960s. 
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tion is formulated, using the tools which were introduced in sections 4.2 and 4.3. 

The electron dynamics in an intense laser field is described by the Schrodinger 

equation in the Kramer-Henneberger [49] gauge (see equation 2.8): 

i&b(X) t) = 

( 
$ + V(x + 4t)) $(x7 t) 

e ) 
(4.8) 

where p = ---ifig and a(t) is the instantaneous displacement (see section 2.5). 

Consider a short electromagnetic pulse with displacement of the form a(t) = 

aof sinwt. Here, ~0 is the maximal displacement and the function f(t) is the pulse 

envelope of finite duration starting from t = 0 and ending at t = Tf. For an electron 

initially in the ground state go(z) the high frequency limit is studied by numerically 

integrating equation (4.8) with a one-dimensional short-range potential (see section 

2.4): 

V(x) = -Bexp(-x2/2a2) (4.9) 

The potential is constructed to support a single bound state (the value of B = 

0.187 au and 0 = 1.8 au are chosen to yield a bound state energy of approximately 

-0.1 au). The total ionization probability, as a function of ~0 and w was calculated 

for a sine-square envelope (see section 2.4)) characterized by a ramp time T,, and flat 
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time Tflat: 

I 
sin2 (r a t/2Ton) t I Ton 

f(t) = 1 Ton -c t 5 T, 

cos2(K(t - Tr)/2Ton) T, < t 5 Tf 

Figure 4.1: Total ionization probability vs. QI~, for a sin20 pulse shape with To, = 
94.25, Tflat = 251.3 au, and w = 0.25 (dashed line), 0.5 (dotted), 1.0 (solid) and 2.0 
(thick line). 

Where T, = To, + T&. The wave-packet calculations were done within the 

Kramers-Henneberger gauge, using the Chebychev expansion method that was rec- 

ommended in section 4.2, with a negative imaginary potential at the grid asymptotes 

[50]. A grid spacing of dz =. 2.0 au and dt = 27rw-r/4 gave a solid 4-digit convergence. 

The shifts of the potential in the Kramers-Henneberger frame are performed using 

Fast-Fourier Transform based on the identity V($ + a) = e-ipa/hV(S)e+i’aiti~ The 

calculation results are shown in figure (4.1) w h ere the end of pulse ionization is plot- 
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ted as a function of the maximal displacement o. for several frequencies. All other 

envelope parameters are kept constant. Note that this figure is visually identical to 

figure (3.10)) in which the split operator method was used with a much smaller grid 

spacing of dx = 0.1. As the frequency is raised the ionization profile converges to 

a limit - the high frequency limit. Unlike the continuous-wave case where the limit 

is zero according to the theory of adiabatic stabilization of Gavrila, here there is a 

structure. The ionization initially rises monotonically with CQ until it reaches a lo- 

cal maximum of 0.7 probability at 010 = 12.0 au. As 010 is further increased beyond 

this value, the ionization probability rapidly decreases reaching a local minimum at 

01~ = 16.0 au. Beyond this the ionization increases once more as CYO is increased. 

In order to understand these results, the (t,t’) formalism is generalized as in [38], 

treating the fast time t as a dynamic variable and defining a slow-time parameter r 

and the T-dependent Hamiltonian: 

H(T) = g 
e 

+ V(x + a10f(7-) sin(wt)) - 95: (4.10) 

With this Hamiltonian, as in the usual (t-t’) formalism, the Schrodinger equation 

becomes: 

ih-$(x, t; 7) = H(+fo, t; 7) (4.11) 

This equation is solved with the initial condition $(x, t; 0) = $a(~). The full solution 

of equation (4.11) is then obtained as G(r) = $(t = 7,~). 
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The extended Hamiltonian H(r) is periodic in t, allowing the following Fourier 

expansion: 

V(X + ctOf(7-) sin(&)) = C einw%(x, 7) 
n 

(4.12) 

where the expansion coefficients are: 

V,(x) 7) = & 1”” epin4 V(x + QO~(T) sin(@))@ (4.13) 

Note that this is the starting point of a Floquet approach, in which for a periodic 

Hamiltonian in time, it is possible to perform a Fourier expansion in order to eliminate 

the time dependence, thus replacing the time-dependent Schriidinger equation with 

the time-independent one. Here, the adiabatic-Floquet approach is used to treat the 

slow time r. Consider the instantaneous eigenfunctions and eigenvalues: 

Because of the periodicity in t the eigenfunctions are written as: 

T/+(X, t; 7) = C eCinwt&)(x; 7) 
n 

(4.15) 

where the components (P:)(T) are the instantaneous Floquet states, satisfying: 

P2 -- 
2m 

nhw S,, + Vnmm(x; 7) p:)(7) = &j(7-)&)(~) (4.16) 

where &j(r) are the instantaneous quasi-energies. The time dependent wave packet is 

expanded in the instantaneous Floquet basis: 

?/J(X) t; 7) = c c~(r)e-i’~~~&~(T’)~T’~~(xl t; 7) (4.17) 
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Plugging this form into equation (4.11) leads to the equation: 

Using the Hellmann-Feynman theorem and equation (4.15)) one obtains for the non- 

adiabatic transition coefficients (Ic # j): 

Where: 

(4.19) 

(4.20) 

Note that non-adiabatic transitions are possible only when the envelope itself is chang- 

ing, as clearly seen in equation (4.20). The strength of transitions also depends on 

the gradient of the Fourier components. It is seen clearly that for a continuous wave 

pulse, where the pulse envelope is constant the transition rate is zero, as is the case for 

the theory of adiabatic stabilization of Gavrila. Note, however, that this observation 

does not mean there is no ionization, because in general the eigenvalues Ed may be 

complex with negative imaginary parts. In the adiabatic picture it is meaningful to 

differentiate between “adiabatic ionization” which is caused by a complex energy and 

non-adiabatic ionization caused by non-adiabatic transitions. 

The theory above makes no specific assumptions and can be considered exact. 

When the laser frequency w is very high it is possible to make simplifying approxi- 

mations. Following reference [29] p.435 one can neglect the rapidly oscillating parts 
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of the eigenfunctions $j. One can therefore set: 

& = cp!’ ; ~pk) = 0 (m # 0) (4.21) 

In this case the eigenvalues Ed corresponding to bound states are all real. The 

equation for the coefficients is: 

ij = c l-$&k = c ck(r) - (cp&$‘)cJ(r) (4.22) 
k k#i 

&j - Ek 

where: 

Iju(x, r) = f(r)a, * v { 2T I”” V(x + aofk) sin(cU WW4} I (4.23) 

Equation (4.22) is an adiabatic equation for the slow Schrijdinger equation: 

(4.24) 

This equation is independent of the frequency and yields the “high frequency limit” 

shown as the bold face line in figure (4.1). Because the potential Vo(z, T) is of the 

same parity as the atomic potential V(x), only even-even and odd-odd transitions are 

possible in the high frequency limit. 

Equation (4.22) may be solved directly for the adiabatic population amplitudes. 

Here we ignored the odd adiabatic states which are decoupled. During the pulse rise 

and pulse decay, the M lowest eigenstates were calculated (the “adiabatic states”) 

of the instantaneous Hamiltonian of equation (4.24). When the pulse flat time is 



84 

very long the adiabatic approach is more efficient than solving equation (4.24). If 

only the M lowest adiabatic states are important (where M is much smaller than the 

number of grid points), the transition matrix in equation (4.22) is a small M x iW 

anti-Hermitian matrix and the evolution of the coefficients for the time step can be 

efficiently performed by diagonalizing it. It was found that 12 states were important 

for quantitative agreement with the full wave packet results. However, as will shortly 

be shown, only 2 states are needed for understanding the general features of the sta- 

bilization. 

The numerical stability of the evolution within the adiabatic scheme is sensitive to 

the way one chooses the phases of the adiabatic states: the phase of the nth eigenstate 

(~~(7 + a~) should be adjusted so that ((~~(7) ]pn(-r + a~)) = p is a real positive num- 

ber. There is a possibility of accumulating geometric Berry phases [51] at each state. 

If this happens the eigenstate at the end of the pulse has a Berry phase of 0s = K 

relative to the ground state at time t=O, in other words: (pn(0)lpn(Tf)) = -1. In 

the calculations for the set of parameters chosen in this study, no such phase effect 

has been encountered. 

The population of the 5 lowest eigenstates for various ramp times during the rise 

and decay of a CQ = 16au pulse is shown in the Appendix. Figure (4.2) highlights 

some of the times which are crucial for observing the most prominent feature, the 
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interplay between the two lowest adiabatic states. 

The prominent feature, becoming apparent at a0 = 12au, is the strong popula- 

tion transfer between the n = 0 and the n = 1 states. This effect becomes dominant 

for yet larger c&s. Thus, under the influence of a strong laser field the n = 1 state 

acts as a trap against ionization, explaining the high frequency stabilization starting 

at a/a N” 12~ and reaching a maximum suppression at ~0 z 16au (see figure 4.1). 

Beyond 010 ==: 16uu ionization suppression degrades as the n = 1 state population is 

high and some transfer to continuum states occur. 

The reason for the trapping effect is the creation of a laser induced resonance state 

as shown in figure (4.3). It is possible to estimate the magnitude of displacement Q,,, 

at which the resonance appears. Define A = JrW V~(T, a)dr and assume the cycle- 

averaged potential (equation 2.9) may be approximated as a square well of length 

L = 2o. The resonance appears when the well depth A/L is equal to the energy 

of the second state in a square well E2 = 2K2,ir2/m,L2 thus: a,.,, M k2n2/m,A. In 

our potential this equation correctly estimates the appearance of the resonance at 

CEO = 12uu. 

The Floquet-adiabatic framework has allowed a straightforward explanation of 

dynamic stabilization in short-ranged potentials caused by the appearance of a laser- 
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Figure 4.2: Population of the lowest 5 adiabatic states as a function of pulse rise and 
decay time for 4 cases, starting from left to right: CQ = 6uu, ~0 = 12uu, o. = 14au, 
CQ = 16uu. Pulse ramp forms are shown as a dotted line in the ~0 = 6uu figure. The 
n = 0 and n = 1 lines are captioned while the n = 2 is a dashed line, n = 3 is dotted 
and n = 4 dot-dashed. In all cases the n = 0 state starts with lCoj2 = 1 at t = 0 and 
loses population to excited states which are all positive energy states. 

induced resonance state that traps ionized population. A fundamental difference 

between adiabatic and dynamic stabilization is that the former is caused by the sup- 

pression of non-adiabatic transitions while the latter exhibits strong transitions and 

the suppression of ionization is caused by trapping into a laser induced resonance 

state. Pulses must also be turned off for a complete understanding of dynamic sta- 

bilization. The pulse can also have a “flat” part where no non-adiabatic transitions 

occur. Still the length of the flat part has an influence on the total ionization, be- 
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Figure 4.3: The shape of the dressed potential and the first 3 even adiabatic states at 
Q = Ouu (left) and a/ = 12.5~~ (right). It is seen that while the n=O state is bound 
and n=2 is a continuum state in both cases, the n=l state changes character from a 
continuum state to a localized resonance. 

cause it determines the quantum phases with which components remix as the pulse 

is turned off. Dynamic stabilization in our case is a manifestation of light induced 

atomic resonance states. Two questions which deserve detailed treatment in future 

work are: what is the role of laser induced states when longer ranged potentials are 

present, and when lower frequencies are used. In addition, an exciting new direction 

is the construction of polarized pulses (interacting with electrons in more than one 

dimension) where a geometric Berry phase effect [51] can be measured on these light 

induced resonances. 
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Chapter 5 

Introduction to Markov Decision 

Processes 

This chapter serves as an introduction to Markov decision problems. It also de- 

scribes standard methods (i.e., dynamic programming) for solving Markov decision 

problems. In the next chapter, the implementation of these methods will be compared 

to a genetic algorithm implementation on a given model problem. 

Section 5.1 introduces the field of complex decision making, and the standard 

way to model such problems as Markov decision processes. Section 5.2 provides 

the basic terminology. In section 5.3, the Bellman equation is derived. Section 5.4 

describes Dynamic Programming, an approach to solve the Bellman equation. Finally, 

section 5.5 motivates the comparison done in the next chapter, by reviewing the 
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basic approaches used for solving Large-Scale Markov decision problems which are of 

practical interest. 

5.1 Modeling Decision Making as a Markov Deci- 

sion Process 

Computational issues involved in making decisions are of interest in a variety of 

fields and areas of application. From inventory control problems in operations re- 

search to robotic navigation in artificial intelligence, a wide range of problems can be 

tackled and solved using efficient search strategies. 

In general, when confronted with a decision to make, there are a number of dif- 

ferent alternatives (actions) one can choose from. Choosing the best action often 

requires long term thinking, as opposed to the immediate effects of an action. In 

problems of this type, it is desired to choose the action that makes the right tradeoffs 

between the immediate rewards and the future gains. People do such reasoning on a 

daily basis, and a Markov decision process is a way to model problems so that this 

rational can be automated. If one can model the problem as a Markov decision pro- 

cess, then there are a number of algorithms that will automatically solve the decision 

problem. 
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In the next section, after introducing the basic terminology, the Markov assump- 

tion will be explained. This simplifying assumption allows the examination of a wide 

range of algorithms to solve decision making problems, which are otherwise too com- 

plicated to solve in a systematic way. 

5.2 Basic Terminology: States, Actions, Policies 

The four components of a Markov decision problem are: a set of states, a set 

of actions, the effects of the actions and the immediate value of the actions. These 

components will be discussed in this section, as well as other basic terminology which 

is used in this field. 

The decision-making problem is framed from the perspective of an agent that is 

situated in an environment. An agent can be a person, a robot, a control program 

in a factory, or the like. For such an agent, the world is composed of different states. 

The agent can choose among various different actions, which are a set of possible al- 

ternatives. The problem is to know which of these actions to perform for a particular 

state of the world. 

When deciding between various actions, it is often the case that there is some 

idea of how they will affect the current state. The transitions specify how each of the 

actions change the state. The most powerful aspect of the Markov decision process 
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is that the effects of an action can be probabilistic (e.g., performing an action ‘al’ in 

state ‘sl’, results in the state ‘~2’ 70% of the time and state ‘~3’ 30% of the time). 

In order to measure the value of an action, immediate rewards are often used, that is 

the immediate value for performing each action in each state. 

It is now possible to formally define a MC&XV decision process as a 4-tuple, 

(S,A,T,R). S is a set of states, A is a set of actions, T is a transition model for 

the system which is a mapping from S x A x S into probabilities in [0, 11. For the 

states s, s’ E S and an action a E A, T(s, a, s’) = P(s’(s, a), the probability that the 

next state will be in s’ when an action a is taken in state s. R is a reward function 

that maps from S x A x S to real-valued rewards. 

Finally, the solution to a Markov decision problem is called a policy, denoted by 

7r. It simply specifies the best action to take for each of the states. Although the 

policy is what one is after when solving a Markov decision problem, what is actually 

computed is known as the value function. A value function, denoted by V, is simi- 

lar to a policy except that instead of specifying an action for each state, it specifies 

a numerical value for each state (which is also known as the utility value of that state). 

At this point, it is instructive to clarify the Murkov assumption. When previously 

defining transitions, it was enough to specify the resulting next state for each starting 
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state and action. This assumes that the next state depends only upon the current 

state (and action). There are situations where the effects of an action might depend 

not only on the current state, but upon the last few states. The assumption made by 

the Markov decision process model is that the next state is only determined by the 

current state (and action). 

5.3 Bellman Equation 

In this section, the Bellman equation is given which is the basis for dynamic pro- 

gramming, an approach to solving sequential decision problems developed in the late 

1950s by Richard Bellman [16]. In addition, two value determination methods are 

described. Value determination is the step in which utility values are determined from 

a given policy and is common to all methods for solving Markov decision problems. 

Algorithms to solve Markov decision problems work by assigning values to states 

and manipulating these values with the goal of finding the optimal policy. Any policy, 

OTT, defines a value function, V,, over all states in the model. Given an additive value 

function, the value of a state can be expressed in terms of the value of its successors: 

K(s) = R(s, n(s)> + P c qs, 6 s’>Kr(s’> (5.1) 5-I 
Equation (5.1).is known as the Bellman equation [16]. It says that the value of 
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state s under policy 7r is the immediate reward received in state s plus the expected 

value of the succeeding state. 0 < ,8 < 1 is known as the discount factor. Discount- 

ing arises so that the sum in the equation above will converge to a finite amount in 

infinite-horizon models, as well as other reasons mentioned in [52,53]. In the next 

chapter, the issue of discounting will be revisited. 

The optimal policy will be labeled as 7rr* and optimal value function as V*. Several 

theorems can be proved at this point about uniqueness and optimality (see proofs in 

[52). For example, there exists a unique, optimal value function, V*, (Blackwell, 

1962) resulting from any optimal policy, 7r*7 such that: 

v*(s) = R(s, 7r*(s)) + p c T(s, a, s’)v*(s’) (5.2) 

Since the optimal policy assigns the best action to every state, the goal is to find 

an optimal policy 7r*, characterized by actions a, such that: 

V*(s) = m$x[R(s, a) + PCT(s, a, s’)V*(s’)] 
s’ 

(5.3) 

A basic step in every method which attempts to find the optimal policy is the value 

determination step. Given a policy, the goal is to compute the values at all states. The 

value determination step can be implemented in several ways. Two common ways will 

be described here, the second one being used in the next chapter. Other ways, such as 
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the method of temporal differences [55] which determines V, through experience with 

the environment, are usually applied to large problems and will not be discussed here. 

The first way is known as successive approximation. It starts with an arbitrary 

value function, V”, and finds the desired value function using an iterative procedure. 

Specifically, one calculates Vi from Vi-l. If one labels the right-hand-side of the 

Bellman equation (5.1) by the operator J, such that the Bellman equation becomes 

V,(s) = J,(s)V,, it is possible to iterate as follows: 

Vi t J,Vi-l (5.4 

With each application of Jr, Vi gets closer to V,. 

The second way, which can also exploit the sparseness in the system, is by directly 

solving a set of linear equations. The Bellman equation for policy 7r can be written 

for each state in S, producing the following linear system of equations in a matrix 

form: 

%) 

R(sd 
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The solution to this system of equations produces V,. If n is the number of vari- 

ables in the system, it can be solved using Gaussian Elimination in O(n3) time or 

closer to O(n2) with methods that exploit sparseness in the matrix. 

5.4 Dynamic Programming 

Based on the Bellman equation, two well known iterative procedure which aim at 

finding the optimal policy TT* are value iteration and policy iteration. 

5.4.1 Value Iteration 

Value iteration is very similar to the method of successive approximation, de- 

scribed in the previous section, for the value determination step. Basically, the Bell- 

man equation (5.1) can be applied repeatedly. Value iteration starts with an arbitrary 

value function, V”. Instead of applying J, for a particular policy, as in successive 

approximation, it applies the general J operator which contains a maximum over all 

actions. Thus, 
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Vi + Jvi-1 
(5.5) 

As i + 00, the values in each of the states will converge to stable values given 

certain conditions on the environment. A handful of theorems exist regarding the 

property of the J operator and the rate of convergence (see [52]). Also, value iter- 

ation can be generalized to the case where not all states are updated at once. This 

modification is known as the asynchronous value iteration, more details can be found 

in [56]. A step by step procedure for the standard value iteration algorithm is given 

below: 

1. Start with an arbitrary evaluation function V. 

2. Repeat until the error bound of the evaluation function is less than E: For 

each state s in S, 

V(s)‘:= argmcx[R(s, a) + ,B c T(s, a, s’)V(s’)] 
s’ 

(5.6) 

3. Extract an e-optimal policy from the evaluation function as follows. For 

each state s in S, 

K(S) ‘:= argmtx[R(s, a) + p xT(s, a, s’)V(s’)] 
S’ 

(5.7) 

5.4.2 Policy Iteration 

Since the optimal policy is often not very sensitive to the exact utility values, 

an alternative way to find the optimal policies can be devised. The policy iteration 
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algorithm works by picking a policy, then calculating the utility of each state given 

that policy. It then updates the policy at each state using the utilities of the successor 

states, and repeats until the policy stabilizes. The step in which utility values are 

determined from a given policy, the value determination step, was outlined in the 

previous section. For small state spaces, value determination using exact solution 

methods (i.e., solving the linear system of equations as specified at the end of section 

5.3) is often the most efficient approach. The basic idea behind policy iteration, as 

compared to value iteration, is that the value determination step should be simpler 

than value iteration because the action in each state is fixed by the policy. 

A step by step procedure for the policy iteration algorithm is given below: 

1. Start with an arbitrary policy n-. 

2. Repeat until the policy does not change: 

(a) Compute the evaluation function V(r) for policy OTT by solving the 

linear 

system of equations (as outlined at the end of section 5.3). 

(b) For each state s in S, 

n(s) := argm:x[R(s, a) + ,O c T(s, a, s’)V(s’)] 
s’ 

(5.8) 

Resolve ties arbitrarily, but give preference to the currently selected 

action. 
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Thus, step 2(a) is the value determination step which can be done more efficiently 

than in the case of value iteration, and step 2(b) is the policy improvement step. 

This decomposition of the policy iteration algorithm should be remembered in the 

next chapter, when comparing the dynamic programming approach with the genetic 

algorithm approach, since step 2(a) is identical in both methods. 

5.5 Large-Scale Markov Decision Problems 

This section gives a brief overview of the research effort for solving Large-Scale 

Markov decision problems. The emphasis is mainly on two different approaches to 

tackle large problems: one which uses genetic algorithms as its backbone, and the 

other which attempts,td use dynamic programming modified to handle a large state 

space. 

Problems such as the 4x3 model problem, which will be examined in the next 

chapter, are beneficial only if they enable a better understanding of larger, practical 

real-life problems. It will be seen that solving the 4x3 model problem can provide 

insights for solving larger problems. However, real-life problems are much bigger in 

size: they might contain hundreds or thousands of different states. Unfortunately, 

while many problems can be modeled as Markov decision problems, not all of these 

problems can be solved easily within this framework. Standard methods to solve a 

Markov decision process model with no further modifications require unreasonable 
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amounts of memory and run-time. This section briefly discusses some ongoing re- 

search designed to solve Large-Scale Markov decision problems. 

An approach which motivates the comparison between genetic algorithms and 

dynamic programming, being done in chapter 6, is the symbiotic, adaptive neuro- 

evolution [57]. It belongs to the general class of reinforcement learning methods, which 

are learning methods ‘based on learning an input-output mapping through a process 

of trial and error designed to maximize a scalar performance index. The Symbiotic, 

adaptive neuro-evolution was designed as a method for forming decision strategies in 

domains where it is not possible to generate training data for normal supervised Zeurn- 

ing (in a supervised learning, there is an external teacher, having knowledge of the 

environment that is represented by a set of input-output examples. Supervised learn- 

ing algorithms include the least-mean-square algorithms [58] and the backpropagation 

algorithm [59], both are classic examples of a neural network). Symbiotic, adaptive 

neuro-evolution maintains a population of possible strategies, evaluates the goodness 

of each from its performance in the domain, and unlike supervised learning uses an 

evolutionary algorithm to generate new strategies. The evolutionary algorithm modi- 

fies the strategies through genetic operators like selection, crossover, and mutation [2]. 

More details on the symbiotic, adaptive neuro-evolution can be found in [60]. Ac- 

tive researchers in the, field who are using this approach for problems with large state 
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spaces are D.E. Moriarty, from the Information Science Institute at the University of 

Southern California, and P. Langley, from the Daimler-Benz Research and Technol- 

ogy Center at Palo Alto, California. Problems which are of interest in this context, 

for example, include learning cooperative lane selection strategies for highways and 

traffic management control. 

For such applications, the state space is so large that it is no longer possible to 

represent a policy as a simple vector mapping states to actions. The length of such 

a vector becomes too large, value determination steps become tremendously expen- 

sive, therefore building an accurate model becomes impractical. In these extreme 

conditions, policy iteration in its current form can not be used. Therefore, the only 

approach which is known at present to try and tackle huge state spaces is to use a 

compact representation of a policy, by mapping a partial description of the state to 

actions. The fitness of the policy representation can then be evaluated by measur- 

ing the actual (or simulated) performance from some initial condition. This avoids 

assigning a value to every state, and performance is improved by using genetic al- 

gorithms as the backbone of the symbiotic, adaptive neuro-evolution algorithm. No 

comparison to dynamic programming methods is possible in simulations of this kind. 

On the other hand, much research effort is invested for developing ways to solve 

large Markov decision problems by using standard methods (i.e. dynamic program- 
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ming) through hierarchy and decomposition. One idea is to use a method called 

hierarchies of abstract machines, which allows the incorporation of prior knowledge 

into the search for good policies The knowledge contained in hierarchies of abstract 

machines is used to transform a large Markov decision problem into a smaller one 

that makes optimal use of the knowledge provided. Another idea is to decompose a 

large Markov decision problem into independent, or nearly independent subproblems. 

These subproblems can be solved separately by devising a cache of solutions for each 

subproblem, then finding the optimal way to combine the cached solutions. These 

decomposition methods provide a framework for the transfer of knowledge across 

problems with similar structures. Hierarchies of abstract machines and decomposi- 

tion algorithms are complementary to each other and can be combined in novel ways. 

More details on solving large Markov decision problems by Hierarchical Control 

and Learning can be found in [19]. The development of methods for large state spaces 

that are variations of policy iteration is of interest to several researchers, including R. 

Parr and D. Keller from the Robotics Laboratory at Stanford University, as well as 

groups at the University of California at Berkeley, Brown University, Duke University, 

University of Massachusetts at Amherst, and the University of British Columbia in 

Vancouver, Canada among many others. Another major effort which is related to 

this field of research, but will not be discussed here, is the development of methods 

to solve partially observable Murkov decision problems [61,62]. 
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Chapter 6 

Genetic Search in Policy Space for 

Solving Markov Decision Processes 

Following the introduction to Markov decision processes, as was presented in the 

previous chapter, the goal of this chapter is to examine the use of genetic algorithms 

to solve Markov decision problems. 

In an earlier paper [17] on using genetic algorithms to solve a small sized finite 

Markov decision problem, no comparisons with existing techniques were reported. 

Therefore conclusions related to the success of the approach should be taken cau- 

tiously. In this chapter a comparison is made between an efficient genetic algo- 

rithm implementation and policy iteration, which is the most closely related iterative 

method to genetic algorithms, on an extended yet small sized infinite-horizon Markov 
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decision problem. Such a comparison enables a better understanding of the strengths 

and weaknesses of a genetic algorithm approach. These lessons can prove useful when 

moving towards real-world applications with large state and action spaces, as well as 

more complicated model structures which are computationally intractable for existing 

techniques. 

The chapter is divided as follows. Section 6.1 presents the model problem used 

for the comparison and the dynamic programming approach with which the genetic 

algorithm is compared. This section is further extended to include a discussion on dis- 

counting which will later reappear in the genetic algorithm implementation. Section 

6.2 initiates the genetic algorithm approach by describing the binary representation 

of policies. In section 6.3, the issue of choosing the right fitness function evaluation 

for the genetic algorithm.is examined. Section 6.4 compares several genetic algorithm 

evolution strategies and the most efficient one is then compared with the policy it- 

eration algorithm. In section 6.5, conclusions are drawn with an eye towards the 

implementation of a genetic algorithm in larger problems. 

6.1 Model Problem Presentation 

The following model problem is taken from [53]. An agent is situated in a 4x3 

grid-world model environment. The start state is in (1,l) and the goal state is in 

(4,3). The goal is to find an optimal Markov decision problem policy to reach the 
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goal state using a set of four available actions: North, South, East, and West. The 

environment terminates when the agent reaches one of the states marked +l or -1. It 

is also assumed that the agent knows which state it is in initially, and that it knows 

the effects of all of its actions on the state of the world. It is possible to introduce 

additional complications, in which not enough information is provided to determine 

the state or the associated transition probabilities. Such an extended version of the 

problem belongs to the class of partially observable Markov decision problems, and 

will not be treated here. The model environment in our case, a typical Markov deci- 

sion problem is: 

Figure 6.1: The 4x3 grid-world from Russell & Norvig [53] 

The rules for this model problem are as follows: each action moves one square 

in the intended direction with probability 0.8, but the rest of the time the action 

moves the agent at right angles to the intended direction. For example, from the 
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start square (l,l), the action North moves the agent to (1,2) with probability 0.8, but 

with probability 0.1 it moves moves East to (2,l) and with probability 0.1 it moves 

West, bumps into the wall and stays in (1,l). Whenever bumping into a wall, there 

is no change in the position. The reward R, associated with states, is a penalty of 

-l/25 for passing each state (long and repeated routes are not encouraged) except 

for +l in (4,3) and -1 in (4,2). 

The following notation will be used to describe the problem, its optimal policy 

solution and values of the states for the given optimal policy: 

* * * +1 
: 1; 

--F-+-s 
*w*-1 =+ T w T 

** * -k t tt 

0.812 0.868 0.918 tl 

0.762 W 0.660 -1 

0.705 0.655 0.611 0.388 

+1 

-1 

t 

In this notation, W stands for wall, arrows -+, t, 4, t are used to label all possible 

actions, while * denotes any of these actions. The solution to this problem, also given 

above, will now be derived following a description of the dynamic programming ap- 

proach. 
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In a more abstract mathematical formulation, a Markov decision process is a 4- 

tuple, (S, A, T, R). S is a finite set of states s, A is a finite set of actions a. 7’ is 

the transition model for the system, a mapping from S x A x S into probabilities in 

[O,l], in particular T(s,a,s’) = P(s’ ] s,a). R is the reward function which maps 

from S x A x S to real-valued rewards. 

A policy 7r for a Markov decision problem is a mapping from states in S to actions 

in A. The value function V maps from elements of S to real values. The Bellman equa- 

tion (see section 5.3) from dynamic programming establishes a relationship between 

V,(s) and V, for other states in the model: 

v,(s) = R(s, T(S)) + P xT(s, a, s’)V,(s’) (64 

Where 0 < /3 < 1 is known as the discount factor. The optimal policy will be 

labeled as K* and optimal value function as V*. Since the optimal policy assigns the 

best action to every state, the goal is to find an optimal policy OTT*, characterized by 

actions a, such that: 

V*(s) = mcx[R(s, a) + ,8 xT(s, a, s’)V*(s’)] (6.2) 

Two well known iterative procedures which aim at finding the optimal policy, 

based on the above equation, are value iteration and policy iteration (see section 

5.4). Since it is more logical for a genetic algorithm implementation to search in 
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policy space, the policy iteration algorithm is used for the comparison. 

The value determination step can be implemented by either a successive approx- 

imation, or directly by solving a set of linear equations (see section 5.3). The latter 

can exploit the sparseness in the system, hence it is chosen for the model problem 

implementation. The Bellman equation for policy 7r can be written for each state in 

S, producing a linear system of equations in a matrix form (see end of section 5.3). To 

illustrate the value determination step, the linear system which results from taking 

the optimal policy in the model problem, the one which produces the final values of 

the states solution, is: 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0.8 

0 0 

0.8 -0.8 

0 0 

0 0 

-0.9 0.1 

0 0 

0 0 

0.8 -0.9 

0 .O 

0 0 

-0.9 0 

0 0 

0, 0 

0 0 

0 0 

0 0 

0 0 1 0 0 0 0 

0 0 0 0 0 0 1 

0 0 0.1 0 0 0 0 

0 0.1 0 0 0 -0.9 0.8 

0 -0.9 0.1 0 0 0.8 0 

0 0.1 0 0 0 0 0 

0 0 0 0 -0.8 0.8 0 

0 0 0 0 0 0 0 

0.1 0 0 -0.9 0.8 0 0 

-0.8 0 0 0.8 0 0 0 

0.8 0 0 0 0 0 0 

-1.0 

1.0 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 

0.04 
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Attention is now turned to the discount factor ,D. In [53], for simplicity reasons, the 

Bellman equation does not contain discounting. While setting /3 = 1 does not cause a 

problem in the original model, consider the following slight modifications to the model: 

i 

f w * +I 
** *-1 

** * * 

l-r W+l 

* w * -1 

** * * 

In both cases the policy iteration, which without loss of generality starts in the model 

problem with an initial policy in which all arrows are lined upwards, will fail in the 

first value determination step. Without discounting, conservation of probability for 

each state si holds: 

5 qsi, +%s Sk)) = 1 (6.3) kl 
So that the sum of each row in the left-hand side of the system amounts to zero. 

In two cases, this can lead to no solution of the linear system and therefore 0 5 ,L? < 1 

is required to break the conservation. In the first case, corresponding to the left 

modification of the above model, one state interacts only with itself. The state (1,3) 

will produce a Bellman equation which has no solution. In the second case, shown in 

the right, only two states interact with each other. The states (1,3), (2,3) will create 
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two Bellman equations that contradict each other, which again results in no solution. 

To avoid destructive two-states interactions as well as one state interacting with it- 

self, a discount factor p = 0.99 is added from now on throughout the chapter to the 

model problem. However, at the price of fixing cases of destructive interferences, the 

discounted model is different than the original model and the optimal policy, when 

calculated, will differ. For the -l/25 penalty in R, as in [53], the optimal policy 

for the state (3,l) will cease to be conservative: it will no longer recommend taking 

the long way around in order to avoid the risk of entering (4,2). Therefore, along 

with introducing ,8 = 0.99, the penalty is decreased to -l/50, resulting in the same 

optimal policy as in the original model. 

The above discussion on discounting is highly relevant to the genetic algorithm 

implementation and will further be discussed when formulating the fitness function. 

6.2 Representation 

The first task in a genetic algorithm is to code the decision variables into binary 

strings. It is customary to work with a binary representation for which the schema 

theorem (see section 1.5.1) applies. Therefore, the search space which is the most 

natural to use in a Markov decision problem is policy space, rather than values of 

states which are a collection of real numbers. 
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In the model problem, there are four possible actions in A. These can be coded 

into lO,ll, 00,Ol for 4, t, .J., t, respectively. A policy can then be constructed by 

concatenating the various actions at each state, to form a string of binary bits of 

length 2 * N, where N is the number of states. Such a binary string to represent a 

policy is called a chromosome. 

Out of eleven states in the 4x3 example, two are forced to choose a prescribed 

action. States (4,2), (4,3) will always choose their action to be T, therefore each chro- 

mosome is of length 2 * 9 = 18. Indexing is chosen to start at state (l,l), then move 

right to (4,1), then upwards to (1,2), then right to (3,2), repeatedly until termina- 

tion at (3,3). For example, the optimal policy n-* is represented by the chromosome 

[llOlOlOllllllOlOlO]. Solely for investigative purposes (figure 6.2 in the next sec- 

tion), a real number representation of chromosomes was included in the simulation. 

For that reason, all possible binary combinations (2 i8 = 262144) were taken between 

-13.1072 and 13.1072, with a grid spacing of 0.0001. In that case, the optimal policy 

7r* amounts to 8.80 when converted to a real-number. 

6.3 Fitness Function Evaluation 

For each representation of a policy by a chromosome, a fitness value is assigned. 

Constructing the best fitness function, which maps from policies to fitness values, so 

that the genetic algorithm evolves efficiently, is of central importance in the imple- 
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mentation. 

The value determination step of policy iteration produces a vector V of N elements, 

each of which contains the value V(si) at state si. Taking the separable value function 

to be additive, the fitness value of a policy 7r can then be formulated by summing 

over all elements of V: 

m = U/N) 2 V(sJ (6.4) i=l 
In a Markov decision problem, in general, an objective function has several choices. 

Among them are expected average reward (reward per step), expected total undis- 

counted reward and expected total discounted reward. For reasons already mentioned 

earlier, expected total discounted reward is mostly favored for the genetic algorithm 

implementation when using value determination. In addition to the previous exam- 

ple in the presentation section, where two states are interacting with each other to 

produce no solution in a slightly modified version of the original model when using 

policy iteration, all policy space is vulnerable in a genetic algorithm search. Below 

is an example of a configuration in the original model, which does not arise in policy 

iteration, that needs to be avoided in the genetic algorithm implementation by way 

of discounting: 
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* * * +l 

1 I -J. w * -1 

t* * * 

The two states which are interacting destructively in this example are (1,l) and (1,2). 

Therefore, V(si) is chosen to be calculated by value determination using a discounted 

model. 

Figure 6.2: Fitness function used in the genetic algorithm simulation 
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Figure 6.2 illustrates how the fitness function, given in equation (6.4), is noisy and 

unpredictable. Policies are represented in the horizontal axis by converting binary 

strings into real numbers between -13.1072 and 13.1072 (although throughout the 

genetic algorithm evolution, they obviously evolve as chromosomes in a binary form). 

It is therefore evident that for searching the whole policy space, without favoring 

any certain subsections of the space initially, a genetic algorithm is perhaps the most 

efficient technique to locate the global maximum in order to find the optimal policy. 

6.4 Evolution Strategies 

Finally, an initial population of random policies and their respective fitness values 

are evolved for several generations using selection, reproduction, crossover and muta- 

tion, until convergence to the optimal policy. Figure 6.3 illustrates some of the genetic 

algorithm terminology used so far (see chapter 1 for exact details and definitions). 

The genetic operators which are used to solve the model problem (i.e. crossover 

and mutation), as well as the chosen genetic algorithm parameter values, are the 

ones which are commonly used [2] to search for a global maximum in a noisy func- 

tion similar to the one in figure 6.2. A modern genetic algorithm implementation by 

[lo], which is freely distributed, was modified to handle the 4x3 model-environment, 

as well as representation of policies and value determination by means of Gaussian 

Elimination for the fitness function evaluation. 
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Figure 6.3: Genetic algorithm basic terminology 

The above implementation includes a variant of genetic algorithms which allows a 

small population size to be evolved. Typically the population size is set to be at least 

NP = 50. However, an approach called micro genetic algorithm (see section 1.4.2) 

works with a small population size of NP = 5. In both simple genetic algorithms 

and micro genetic algorithms, selection is done based on tournament selection and 

uniform crossover is used. However, no mutations are necessary in a micro genetic 

algorithm since there is a constant infusion of new schema at regular intervals. It is 
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also worthwhile mentioning that sensitivity experiments on this problem, by slightly 

modifying basic genetic algorithm parameters, yielded no better results. 

In figure 6.4, the simple genetic algorithm for two typical population sizes (Np = 

50, Np = 100) and the micro genetic algorithm (Np = 5) are compared in terms of 

function evaluations (the number of generations required for convergence, multiplied 

by population size). It turns out that for searching policy space in the 4x3 model 

problem, the micro genetic algorithm works best performancewise. Convergence to 

the optimal policy was achieved after 8 generations for Np = 100, 13 generations for 

Np = 50 and 56 generations for N,, = 5, resulting in the least amount of function 

evaluations (56 * 5 = 280) when the micro genetic algorithm was used. 

Using the policy iteration algorithm, in which the same value determination as in 

the genetic algorithm is performed in each iteration, only 5 iterations were needed to 

reach the optimal policy. Policy improvement is therefore surprisingly more efficient 

than a genetic algorithm for a problem with a small state space. 

Finally, it is instructive to examine the intermediate steps before reaching the 

optimal policy in both methods. In policy iteration, after the first iteration (20% of 

total calculation), the policy at hand is quite close to the optimal: only three actions 

in three states are needed to be adapted in consequent steps. No ‘illogical ’ policies 
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Figure 6.4: Best-So-Far-Fitness genetic algorithm performance evaluation: NP = 100 
(dashed), NP = 50 (dot-dashed), NP = 5 (solid). 

are considered, such as an action somewhere pointing to a wall with no apparent 

reason. In addition, policies are consistently improving at each step. In the micro 

genetic algorithm, after 11 generations (roughly 20% of total calculation), the best-so- 

far policy differs from the optimal one by four actions (three of which point to a wall), 

clearly not as good as policy iteration in the early stage. Also, at a later generation it 

goes downhill, from what seems to be a good policy to a lesser one, in order to emerge 

with an improved policy after one more generation. This behavior is attributed to 

the different nature of the two methods. With respect to certain ‘illogical’ actions, 

perhaps restricting the search space in the genetic algorithm implementation rather 

than leaving it flexible can yield a better performance, if such a strategy proves to be 

cost effective. 
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6.5 Conclusion 

In this section, conclusions are drawn which are related to the comparison between 

genetic algorithms and dynamic programming on the model problem. 

A genetic algorithm approach was implemented to solve a Markov decision process 

model problem with small state and action spaces. It was found that a discounted 

model is required in order to search policy space using value determination steps 

The approach was optimized to perform in the most efficient manner, using a genetic 

algorithm variant called micro genetic algorithm. 

Comparison with the policy iteration algorithm reveals that for relatively small 

problem sizes, policy iteration outperforms the genetic algorithm. Larger examples 

reveal that the inefficiency of genetic algorithms become even more pronounced, since 

policy iteration converges in a surprisingly small number of iterations. Policy itera- 

tion only examines a small portion of policy space right from the beginning whereas 

the genetic algorithm starts initially with a random distribution covering all space. 

Therefore, the workload the genetic algorithm is facing is by far heavier than that of 

policy iteration. 

On the other hand, it should be noted that in very large state spaces, it is no 

longer possible to represent a policy as a simple vector mapping states to actions. 

As was described in section 5.5, in such cased only the symbiotic, adaptive neuro- 
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evolution reinforcement learning method is known to be applicable. No comparison 

to dynamic programming methods is possible in simulations of this kind. 

To conclude, based on the comparison in this chapter, it is unlikely that searching 

policy space by using genetic algorithms can offer a competitive approach in cases 

where the policy iteration algorithm can be implemented. Evolutionary algorithms 

offer an approach, combined with neural networks, to search very large state spaces 

in cases where dynamic programming methods are no longer valid. While further 

advancement on the evolutionary track is to be expected, it remains a challenge to 

develop methods which are based on policy iteration for making decisions in large 

state spaces. 
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Chapter 7 

Conclusions and Future Work 

In the previous chapters, genetic algorithms were implemented for two different 

problems. In the first problem, genetic algorithms were successful at identifying an 

optimal frequency. It consequently led to explaining dynamic stabilization by the ap- 

pearance of laser-induced resonance states which trap ionized population. The second 

problem was taken from the area of artificial intelligence. The goal was to check how 

genetic algorithms are able to compete with a traditional technique, deterministic in 

nature, which has been used for many years to identify an optimal policy in a Markov 

Decision Process. Although genetic algorithms did find the correct solution, dynamic 

programming proved to be significantly more efficient when both methods are appli- 

cable. For that problem, genetic algorithms proved to be unsuccessful compared to 

an alternative method which can be used. 



In the first section, conclusions are drawn and recommendations are given regard- 

ing which problems are potentially suited for a successful genetic algorithm imple- 

mentation. The last section suggests future work concerning the implementation of 

genetic algorithms on various problems. 

7.1 Conclusion 

In the first part of this dissertation, the dynamic stabilization effect was explained. 

It was shown that for a short-ranged potential having a single bound state, ionization 

suppression is caused by the appearance of a laser induced resonance state, which is 

coupled by the pulse turn on/off ramp to the ground state and traps ionizing flux. 

The relation between dynamic stabilization and the well understood adiabatic stabi- 

lization was found. 

Genetic algorithms are general methods for solving search problems. The same 

methodology can be implemented on a variety of problems. In the second part of 

this dissertation, a comparison was done between genetic algorithms and dynamic 

programming which is a method designed to work on particular problems. Genetic 

algorithms were shown to be inefficient compared to dynamic programming. 
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Thus, it is unlikely that a general method such as genetic algorithms can compete 

well with problem-specific methods, designed to exploit the structure in a problem, 
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when implemented on the same model-problem. It can be argued that for each prob- 

lem, genetic algorithms can be tuned for best performance. Depending on the prob- 

lem, a fitness function can be constructed to exploit knowledge, a good representation 

can be chosen and the genetic algorithm parameters can be optimized. While all these 

issues are important and should be carefully implemented to maximize efficiency, the 

mechanism itself is stochastic in nature and general. Therefore, the flexibility in the 

implementation is limited compared to a method for which the mechanism itself is 

designed to exploit structure and symmetry. The conclusion is that in many problems 

for which specific non-stochastic algorithms were designed, it is expected that even 

the best genetic algorithm implementation will not be able to compete against such 

methods when applied to the same model-problem. 

However, there are problems for which it is difficult to come up with specific 

methods since the information about the problem is limited or obscured. In such 

problems, general stochastic methods such as genetic algorithms or simulated an- 

nealing are a way to make progress. Genetic algorithms can then offer a convenient 

alternative since they are flexible and easy to use. Conceptually, simulated annealing 

offers a very similar mechanism without the need to invent new terminology based 

on biological evolution in order to describe the algorithm. 
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7.2 Future Work 

Implementation of genetic algorithms for a variety of problems involves both soft- 

ware and hardware considerations. Their first application in atomic and molecular 

physics [S] was done by incorporating genetic algorithms as part of an experimental 

apparatus. Laboratory experiments were then fed to the computer in order to design 

a new sequence of experiments. 

Since then, many laboratories are using genetic algorithms in real-time during 

experiments in order to automatically construct new ones In addition to laser con- 

trol experiments, they were used in low energy electron diffraction experiments [63] 

and their use in processing experimental data is expected to increase in the future. 

At Hewlett-Packard Laboratories, a high-performance hardware implementation of a 

genetic algorithm is being designed [64]. A 2200x speed-up over software emulation 

on a 100MHx workstations was reached. 

In the software implementation side of a genetic algorithm, a real-number rep- 

resentation instead of the binary representation [65] is expected to be used in an 

increasing number of applications. Extensions to genetic algorithms such as genetic 

programming [66] can be used to search in the space of programs to locate which 

program is best to perform a certain task. These extensions will keep developing in 

order to solve a variety of real-world problems. 
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In laser-atom interactions, calculations which were applied in this dissertation to 

a simplified one-dimensional model of a hydrogen atom can be extended to higher 

dimensions and molecules. A genetic algorithm can be implemented to search in 

multi-dimensional parameter space which includes, in addition to frequency and in- 

tensity, the pulse shape and duration. Apart from atomic stabilization, different 

effects can be studied such as high-harmonic generation using different colors (dis- 

tinct frequencies). Genetic algorithms can then assist in optimal control problems, 

such as constructing an optimal pulse to drive a chemical reaction down a preferred 

pathway. 

- THE END - 

*This work was performed under the auspices of the U.S. Department of Energy 
by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. 
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Appendix A 

Appendix 

The population of the 5 lowest eigenstates for various ramp times during the rise 

and decay of the pulse used in chapter 4 are shown in this appendix. Figure 4.2 high- 

lights some of the important times. Note that only the turn-on and turn-off of the 

pulse are contributing to population change, therefore times when the pulse envelope 

is flat were taken out. 
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